Sequentially additive nonignorable missing data modelling using auxiliary marginal information

被引:10
|
作者
Sadinle, Mauricio [1 ]
Reiter, Jerome P. [2 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[2] Duke Univ, Dept Stat Sci, 214 Old Chem Bldg, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Information projection; Missing not at random; Nonmonotone nonresponse; Nonparametric identification; Observational equivalence; PANEL-DATA; ATTRITION; PROBABILITY; INFERENCE; DISTRIBUTIONS; MINIMIZATION; IMPUTATION; SELECTION; BINARY; SAMPLE;
D O I
10.1093/biomet/asz054
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study a class of missingness mechanisms, referred to as sequentially additive nonignorable, for modelling multivariate data with item nonresponse. These mechanisms explicitly allow the probability of nonresponse for each variable to depend on the value of that variable, thereby representing nonignorable missingness mechanisms. These missing data models are identified by making use of auxiliary information on marginal distributions, such as marginal probabilities for multivariate categorical variables or moments for numeric variables. We prove identification results and illustrate the use of these mechanisms in an application.
引用
收藏
页码:889 / 911
页数:23
相关论文
共 50 条
  • [41] Tackling Missing Data in Community Health Studies Using Additive LS-SVM Classifier
    Wang, Guanjin
    Deng, Zhaohong
    Choi, Kup-Sze
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (02) : 579 - 587
  • [42] Traffic congestion prediction and missing data: a classification approach using weather information
    Mystakidis, Aristeidis
    Tjortjis, Christos
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [43] A model-calibration approach to using complete auxiliary information from survey data
    Wu, CB
    Sitter, RR
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) : 185 - 193
  • [44] Estimating Constituency Preferences from Sparse Survey Data Using Auxiliary Geographic Information
    Selb, Peter
    Munzert, Simon
    POLITICAL ANALYSIS, 2011, 19 (04) : 455 - 470
  • [45] ON ESTIMATING DISTRIBUTION-FUNCTIONS AND QUANTILES FROM SURVEY DATA USING AUXILIARY INFORMATION
    RAO, JNK
    KOVAR, JG
    MANTEL, HJ
    BIOMETRIKA, 1990, 77 (02) : 365 - 375
  • [46] Automatic evaluation and improvement of roof segments for modelling missing details using Lidar data
    Tarsha Kurdi, Fayez
    Awrangjeb, Mohammad
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (12) : 4700 - 4723
  • [47] Strategy for Modelling Nonrandom Missing Data Mechanisms in Observational Studies Using Bayesian Methods
    Mason, Alexina
    Richardson, Sylvia
    Plewis, Ian
    Best, Nicky
    JOURNAL OF OFFICIAL STATISTICS, 2012, 28 (02) : 279 - 302
  • [48] IMPUTING MISSING DATA IN A SWAT WATER QUALITY MODELLING STUDY USING STATISTICAL METHODS
    Boyacioglu, Hulya
    Uyar, Meltem Kaya
    Boyacioglu, Hayal
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2024, 23 (03): : 579 - 586
  • [49] Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information
    Zhang, Shaohui
    Vega, Cedric
    Deleuze, Christine
    Durrieu, Sylvie
    Barbillon, Pierre
    Bouriaud, Olivier
    Renaud, Jean-Pierre
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 114
  • [50] New Chain Imputation Methods for Estimating Population Mean in the Presence of Missing Data Using Two Auxiliary Variables
    Shashi Bhushan
    Abhay Pratap Pandey
    Communications in Mathematics and Statistics, 2023, 11 : 325 - 340