Sequentially additive nonignorable missing data modelling using auxiliary marginal information

被引:10
|
作者
Sadinle, Mauricio [1 ]
Reiter, Jerome P. [2 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[2] Duke Univ, Dept Stat Sci, 214 Old Chem Bldg, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Information projection; Missing not at random; Nonmonotone nonresponse; Nonparametric identification; Observational equivalence; PANEL-DATA; ATTRITION; PROBABILITY; INFERENCE; DISTRIBUTIONS; MINIMIZATION; IMPUTATION; SELECTION; BINARY; SAMPLE;
D O I
10.1093/biomet/asz054
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study a class of missingness mechanisms, referred to as sequentially additive nonignorable, for modelling multivariate data with item nonresponse. These mechanisms explicitly allow the probability of nonresponse for each variable to depend on the value of that variable, thereby representing nonignorable missingness mechanisms. These missing data models are identified by making use of auxiliary information on marginal distributions, such as marginal probabilities for multivariate categorical variables or moments for numeric variables. We prove identification results and illustrate the use of these mechanisms in an application.
引用
收藏
页码:889 / 911
页数:23
相关论文
共 50 条
  • [21] CATEGORICAL DATA FUSION USING AUXILIARY INFORMATION
    Fosdick, Bailey K.
    DeYoreo, Maria
    Reiter, Jerome P.
    Annals of Applied Statistics, 2016, 10 (04): : 1907 - 1929
  • [22] Improved Imputation of Missing Pavement Performance Data Using Auxiliary Variables
    Farhan, J.
    Fwa, T. F.
    JOURNAL OF TRANSPORTATION ENGINEERING, 2015, 141 (01)
  • [23] Including auxiliary item information in longitudinal data analyses improved handling missing questionnaire outcome data
    Eekhout, Iris
    Enders, Craig K.
    Twisk, Jos W. R.
    de Boer, Michiel R.
    de Vet, Henrica C. W.
    Heymans, Martijn W.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2015, 68 (06) : 637 - 645
  • [24] Analyses using multiple imputation need to consider missing data in auxiliary variables
    Madley-Dowd, Paul
    Curnow, Elinor
    Hughes, Rachael A.
    Cornish, Rosie P.
    Tilling, Kate
    Heron, Jon
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2025,
  • [25] Using auxiliary data for parameter estimation with non-ignorably missing outcomes
    Ibrahim, JG
    Lipsitz, SR
    Horton, N
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2001, 50 : 361 - 373
  • [26] Auxiliary item score information to deal with missing data in longitudinal patient-reported outcomes
    Eekhout, Iris
    Enders, Craig K.
    Twisk, Jos W. R.
    De Boer, Michiel R.
    de Vet, Henrica C. W., Sr.
    Heymans, Martijn W.
    QUALITY OF LIFE RESEARCH, 2013, 22
  • [27] An Efficient Family of Estimators for the Population Mean Using Auxiliary Information in the Presence of Missing Observations
    Rachokarn, Thanapanang
    Lawson, Nuanpan
    INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016 (ICOMEIA2016), 2016, 1775
  • [28] Information Extraction for Additive Manufacturing Using News Data
    Sehgal, Neha
    Crampton, Andrew
    ADVANCED INFORMATION SYSTEMS ENGINEERING WORKSHOPS (CAISE 2019), 2019, 349 : 132 - 138
  • [29] Feature selection with missing data using mutual information estimators
    Doquire, Gauthier
    Verleysen, Michel
    NEUROCOMPUTING, 2012, 90 : 3 - 11
  • [30] Strategies to Handle Missing Information in Predictive Modelling Using Routinely Collected Data: Differences in Identified Predictors and Model Performance
    Roso, Albert
    Petersen, Irene
    Collins, Gary
    Rue, Montse
    Tebe, Cristian
    Espallargues, Mireia
    Prieto-Alhambra, Daniel
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2015, 24 : 578 - 579