Sequentially additive nonignorable missing data modelling using auxiliary marginal information

被引:10
|
作者
Sadinle, Mauricio [1 ]
Reiter, Jerome P. [2 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[2] Duke Univ, Dept Stat Sci, 214 Old Chem Bldg, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Information projection; Missing not at random; Nonmonotone nonresponse; Nonparametric identification; Observational equivalence; PANEL-DATA; ATTRITION; PROBABILITY; INFERENCE; DISTRIBUTIONS; MINIMIZATION; IMPUTATION; SELECTION; BINARY; SAMPLE;
D O I
10.1093/biomet/asz054
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study a class of missingness mechanisms, referred to as sequentially additive nonignorable, for modelling multivariate data with item nonresponse. These mechanisms explicitly allow the probability of nonresponse for each variable to depend on the value of that variable, thereby representing nonignorable missingness mechanisms. These missing data models are identified by making use of auxiliary information on marginal distributions, such as marginal probabilities for multivariate categorical variables or moments for numeric variables. We prove identification results and illustrate the use of these mechanisms in an application.
引用
收藏
页码:889 / 911
页数:23
相关论文
共 50 条
  • [31] On estimating the median from survey data using multiple auxiliary information
    M. Rueda Garcı´a
    A. Arcos Cebrián
    Metrika, 2001, 54 : 59 - 76
  • [32] On estimating the median from survey data using multiple auxiliary information
    García, MR
    Cebrián, AA
    METRIKA, 2001, 54 (01) : 59 - 76
  • [33] Robust mixture modelling using multivariate t-distribution with missing information
    Wang, HX
    Zhang, QB
    Luo, B
    Wei, S
    PATTERN RECOGNITION LETTERS, 2004, 25 (06) : 701 - 710
  • [34] Accelerated Gradient Descent Algorithm for Systems With Missing Input Data Using Inverse Auxiliary Model
    Zhu, Yongqiang
    IEEE ACCESS, 2024, 12 : 115006 - 115014
  • [35] Simulating longitudinal data from marginal structural models using the additive hazard model
    Keogh, Ruth H.
    Seaman, Shaun R.
    Gran, Jon Michael
    Vansteelandt, Stijn
    BIOMETRICAL JOURNAL, 2021, 63 (07) : 1526 - 1541
  • [36] Parameter estimation of the systems with irregularly missing data by using sequentially parallel distributed adaptive signal processing architecture
    Raza, Hasan
    Abbasi, Waseem
    Aurangzeb, Khursheed
    Khan, Noor M.
    Anwar, Muhammad Shahid
    Alhussein, Musaed
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 82 : 139 - 144
  • [37] Modelling rental guide data using mean and dispersion additive models
    Stasinopoulos, DM
    Rigby, RA
    Fahrmeir, L
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 2000, 49 : 479 - 493
  • [38] How to handle missing data in regression models using information criteria
    Kuiper, Rebecca M.
    Hoijtink, Herbert
    STATISTICA NEERLANDICA, 2011, 65 (04) : 489 - 506
  • [39] Implicit and efficient handling of missing covariate information using full random effects modelling
    Nyberg, Joakim
    Karlsson, Mats O.
    Jonsson, Niclas E.
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2018, 45 : S57 - S58
  • [40] Spatial Modelling and Prediction Assessment of Soil Iron Using Kriging Interpolation with pH as Auxiliary Information
    Tziachris, Panagiotis
    Metaxa, Eirini
    Papadopoulos, Frantzis
    Papadopoulou, Maria
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2017, 6 (09)