G-convergence of parabolic operators

被引:33
|
作者
Svanstedt, N
机构
[1] Chalmers, S-41296 Gothenburg, Sweden
[2] Gothenburg Univ, S-41296 Gothenburg, Sweden
关键词
G-compactness; G-convergence; homogenization; localization; elliptic; parabolic; monotone operators;
D O I
10.1016/S0362-546X(97)00532-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behavior (as h→+∞) for a sequence of initial-boundary value problems of the form uh′-div(ah(x,t,Duh)) = f in Ω×]0,T[, uh(0) = u0, uhεLp(0,T;W01,p(Ω)), where Ω is an open bounded set in RN, T is a positive real number and 2≤p<∞, is examined. The maps ah are assumed to be monotone and to satisfy certain boundedness and coerciveness assumptions uniformly with respect to h. The existence of a subsequence still denoted by {ah} and a map a with the same qualitative properties as the maps {ah} such that, h→∞, uh→u weakly in Lp(0,T;W01/p(Ω)) and ah(x,t,Duh)→a(x,t,Du) weakly in Lp′(0,T;Lp′(Ω;RN)), is presented.
引用
收藏
页码:807 / 842
页数:36
相关论文
共 50 条
  • [31] G-Convergence of Linear Differential Equations
    Waurick, Marcus
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (04): : 385 - 415
  • [32] G-CONVERGENCE OF GENERATORS AND WEAK-CONVERGENCE OF DIFFUSIONS
    BAFICO, R
    PISTONE, G
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1985, 21 (01): : 1 - 13
  • [33] THE G-CONVERGENCE AND AVERAGING OF SOME HIGH-ORDER NONDIVERGENCE ELLIPTIC-OPERATORS
    SIRAZHUDINOV, MM
    DIFFERENTIAL EQUATIONS, 1983, 19 (11) : 1429 - 1435
  • [34] G-CONVERGENCE FOR NON-DIVERGENCE SECOND-ORDER ELLIPTIC OPERATORS IN THE PLANE
    Alberico, Teresa
    Capozzoli, Costantino
    D'Onofrio, Luigi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (9-10) : 1127 - 1138
  • [35] G-Convergence of systems of generalized Beltrami equations
    M. M. Sirazhudinov
    R. M. Sirazhudinov
    Proceedings of the Steklov Institute of Mathematics, 2008, 261 : 262 - 269
  • [36] G-Convergence of Systems of Generalized Beltrami Equations
    Sirazhudinov, M. M.
    Sirazhudinov, R. M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 261 (01) : 262 - 269
  • [37] G-convergence, Dirichlet to Neumann maps and invisibility
    Faraco, Daniel
    Kurylev, Yaroslav
    Ruiz, Alberto
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) : 2478 - 2506
  • [38] G-CONVERGENCE FOR NON-DIVERGENCE ELLIPTIC OPERATORS WITH VMO COEFFICIENTS IN R3
    Alberico, Teresa
    Capozzoli, Costantino
    D'Onofrio, Luigi
    Schiattarella, Roberta
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (02): : 129 - 137
  • [39] G-convergence and absolute minimizers for supremal functionals
    Champion, T
    De Pascale, L
    Prinari, F
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (01): : 14 - 27
  • [40] SPECTRAL PROBLEMS IN THE THEORY OF HOMOGENIZATION AND G-CONVERGENCE
    SHAMAEV, AS
    DOKLADY AKADEMII NAUK SSSR, 1981, 259 (02): : 294 - 299