G-CONVERGENCE FOR NON-DIVERGENCE SECOND-ORDER ELLIPTIC OPERATORS IN THE PLANE

被引:0
|
作者
Alberico, Teresa [1 ]
Capozzoli, Costantino [1 ]
D'Onofrio, Luigi [2 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[2] Univ Napoli Parthenope, Dipartimento Stat & Matemat Ric Econ, I-80100 Naples, Italy
关键词
BELTRAMI OPERATORS; VMO COEFFICIENTS; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The central theme of this paper is the study of G-convergence of elliptic operators in the plane. We consider the operator M[u] = Tr (A(z)D(2)u) = a(11)(z)u(xx) + 2a(12)(z)u(xy) + a(22)(z)u(yy) and its formal adjoint N[v] = D-2(A(w)v) = (a(11)(w)v)(xx) + 2(a(12)(w)v)(xy) + (a(22)(w)v)(yy), where u is an element of W-2,W-P and v is an element of L-P, with p > 1, and A is a symmetric uniformly bounded elliptic matrix such that det A = 1 almost everywhere. We generalize a theorem due to Sirazhudinov Zhikov, which is a counterpart of the Div-Curl lemma for elliptic operators in non-divergence form. As an application, under suitable assumptions, we characterize the G-limit of a sequence of elliptic operators. In the last section we consider elliptic matrices whose coefficients are also in VMO; this leads us to extend our result to any exponent p is an element of (1, 2).
引用
收藏
页码:1127 / 1138
页数:12
相关论文
共 50 条
  • [1] A counter-example in G-convergence of non-divergence elliptic operators
    D'Onofrio, L
    Greco, L
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 : 1299 - 1310
  • [2] G-CONVERGENCE FOR NON-DIVERGENCE ELLIPTIC OPERATORS WITH VMO COEFFICIENTS IN R3
    Alberico, Teresa
    Capozzoli, Costantino
    D'Onofrio, Luigi
    Schiattarella, Roberta
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (02): : 129 - 137
  • [3] G-CONVERGENCE OF ELLIPTIC OPERATORS IN NON DIVERGENCE FORM Rn
    D'Onofrio, Luigi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (71)
  • [4] G-CONVERGENCE OF ELLIPTIC OPERATORS
    SIMON, L
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (04) : 587 - 594
  • [5] HOMOGENIZATION AND G-CONVERGENCE FOR NONLINEAR ELLIPTIC-OPERATORS OF DIVERGENCE TYPE
    PANKOV, AA
    DOKLADY AKADEMII NAUK SSSR, 1984, 278 (01): : 37 - 41
  • [6] G-CONVERGENCE OF ELLIPTIC-OPERATORS
    ZHIKOV, VV
    MATHEMATICAL NOTES, 1983, 33 (3-4) : 174 - 181
  • [7] Singular solutions for second-order non-divergence type elliptic inequalities in punctured balls
    Marius Ghergu
    Vitali Liskevich
    Zeev Sobol
    Journal d'Analyse Mathématique, 2014, 123 : 251 - 279
  • [8] The Dirichlet problem for second-order elliptic equations in non-divergence form with continuous coefficients
    Dong, Hongjie
    Kim, Dong-ha
    Kim, Seick
    MATHEMATISCHE ANNALEN, 2025, : 573 - 618
  • [9] Singular solutions for second-order non-divergence type elliptic inequalities in punctured balls
    Ghergu, Marius
    Liskevich, Vitali
    Sobol, Zeev
    JOURNAL D ANALYSE MATHEMATIQUE, 2014, 123 : 251 - 279
  • [10] On second-order periodic elliptic operators in divergence form
    Ter Elst A.F.M.
    Robinson D.W.
    Sikora A.
    Mathematische Zeitschrift, 2001, 238 (3) : 569 - 637