G-convergence of parabolic operators

被引:33
|
作者
Svanstedt, N
机构
[1] Chalmers, S-41296 Gothenburg, Sweden
[2] Gothenburg Univ, S-41296 Gothenburg, Sweden
关键词
G-compactness; G-convergence; homogenization; localization; elliptic; parabolic; monotone operators;
D O I
10.1016/S0362-546X(97)00532-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behavior (as h→+∞) for a sequence of initial-boundary value problems of the form uh′-div(ah(x,t,Duh)) = f in Ω×]0,T[, uh(0) = u0, uhεLp(0,T;W01,p(Ω)), where Ω is an open bounded set in RN, T is a positive real number and 2≤p<∞, is examined. The maps ah are assumed to be monotone and to satisfy certain boundedness and coerciveness assumptions uniformly with respect to h. The existence of a subsequence still denoted by {ah} and a map a with the same qualitative properties as the maps {ah} such that, h→∞, uh→u weakly in Lp(0,T;W01/p(Ω)) and ah(x,t,Duh)→a(x,t,Du) weakly in Lp′(0,T;Lp′(Ω;RN)), is presented.
引用
收藏
页码:807 / 842
页数:36
相关论文
共 50 条
  • [41] G-CONVERGENCE AND QUASI-VARIATIONAL INEQUALITIES
    BIROLI, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (16): : 947 - 950
  • [42] SEVERAL QUESTIONS ON G-CONVERGENCE AND NONLINEAR HOMOGENIZATION
    MARCELLINI, P
    SBORDONE, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (10): : 535 - 537
  • [43] G-CONVERGENCE OF DIFFERENTIAL-EQUATIONS WITH LAGS
    MUSELLI, E
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1994, 8B (03): : 513 - 540
  • [44] On G-quotient Mappings and Networks Defined by G-convergence
    Liu, Fang
    Zhou, Xiangeng
    Liu, Li
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (02) : 135 - 146
  • [45] Σ-convergence of nonlinear parabolic operators
    Nguetseng, Gabriel
    Woukeng, Jean Louis
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (04) : 968 - 1004
  • [46] A justification of the Timoshenko beam model through G-convergence
    Falach, Lior
    Paroni, Roberto
    Podio-Guidugli, Paolo
    ANALYSIS AND APPLICATIONS, 2017, 15 (02) : 261 - 277
  • [47] THE STRONG G-CONVERGENCE OF A SEQUENCE OF ELASTICITY THEORY SYSTEMS
    SHAPOSHNIKOVA, TA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1984, (05): : 29 - 33
  • [48] G-CONVERGENCE AND HOMOGENIZATION OF MONOTONE DAMPED HYPERBOLIC EQUATIONS
    Nguetseng, Gabriel
    Nnang, Hubert
    Svanstedt, Nils
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2010, 4 (01): : 100 - 115
  • [49] DERIVING AMPLITUDE EQUATIONS VIA EVOLUTIONARY G-CONVERGENCE
    Mielke, Alexander
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (06) : 2679 - 2700
  • [50] The div-curl lemma "trente ans apres": an extension and an application to the G-convergence of unbounded monotone operators
    Briane, M.
    Casado-Diaz, J.
    Murat, F.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (05): : 476 - 494