Co-evolutionary Diversity Optimisation for the Traveling Thief Problem

被引:1
|
作者
Nikfarjam, Adel [1 ]
Neumann, Aneta [1 ]
Bossek, Jakob [2 ]
Neumann, Frank [1 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Optimisat & Logist, Adelaide, SA, Australia
[2] Rhein Westfal TH Aachen, Dept Comp Sci, AI Methodol, Aachen, Germany
基金
澳大利亚研究理事会;
关键词
Quality diversity; Co-evolutionary algorithms; Evolutionary diversity optimisation; Traveling thief problem;
D O I
10.1007/978-3-031-14714-2_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently different evolutionary computation approaches have been developed that generate sets of high quality diverse solutions for a given optimisation problem. Many studies have considered diversity 1) as a mean to explore niches in behavioural space (quality diversity) or 2) to increase the structural differences of solutions (evolutionary diversity optimisation). In this study, we introduce a co-evolutionary algorithm to simultaneously explore the two spaces for the multi-component traveling thief problem. The results show the capability of the co-evolutionary algorithm to achieve significantly higher diversity compared to the baseline evolutionary diversity algorithms from the literature.
引用
收藏
页码:237 / 249
页数:13
相关论文
共 50 条
  • [41] A Novel Diversity-based Evolutionary Algorithm for the Traveling Salesman Problem
    Segura, Carlos
    Botello Rionda, Salvador
    Hernandez Aguirre, Arturo
    Ivvan Valdez Pena, S.
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 489 - 496
  • [42] Niching-based Evolutionary Diversity Optimization for the Traveling Salesperson Problem
    Anh Viet Do
    Guo, Mingyu
    Neumann, Aneta
    Neumann, Frank
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 684 - 693
  • [43] Multi-swarm co-evolutionary paradigm for dynamic multi-objective optimisation problems
    Hu C.
    Liang Q.
    Fan Y.
    Dai G.
    International Journal of Intelligent Information and Database Systems, 2011, 5 (06) : 618 - 641
  • [44] Preference-Driven Co-evolutionary Algorithms Show Promise for Many-Objective Optimisation
    Purshouse, Robin C.
    Jalba, Cezar
    Fleming, Peter J.
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 : 136 - 150
  • [45] Carnico-ICSPEA2 -: A metaheuristic co-evolutionary navigator for a complex co-evolutionary farming system
    Martinez-Garcia, A. N.
    Anderson, J.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 179 (03) : 634 - 655
  • [46] Application of a Co-evolutionary Genetic Algorithm to solve the Periodic Railway Timetabling Problem
    Arenas, Diego
    Chevrier, Remy
    Rodriguez, Joaquin
    Dhaenens, Clarisse
    Hanafi, Said
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND SYSTEMS MANAGEMENT (IEEE-IESM 2013), 2013,
  • [47] Cooperative Co-Evolutionary Memetic Algorithm for Pickup and Delivery Problem with Time Windows
    Blocho, Miroslaw
    Jastrzab, Tomasz
    Nalepa, Jakub
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 176 - 179
  • [48] Exploiting coalition in co-evolutionary learning
    Seo, YG
    Cho, SB
    Yao, X
    PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2000, : 1268 - 1275
  • [49] Co-evolutionary dynamics on a deformable landscape
    Ebner, M
    Watson, RA
    Alexander, J
    PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2000, : 1284 - 1291
  • [50] Co-evolutionary learning in strategic environments
    Namatame, A
    Sato, N
    Murakami, K
    RECENT ADVANCES IN SIMULATED EVOLUTION AND LEARNING, 2004, 2 : 1 - 19