Co-evolutionary Diversity Optimisation for the Traveling Thief Problem

被引:1
|
作者
Nikfarjam, Adel [1 ]
Neumann, Aneta [1 ]
Bossek, Jakob [2 ]
Neumann, Frank [1 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Optimisat & Logist, Adelaide, SA, Australia
[2] Rhein Westfal TH Aachen, Dept Comp Sci, AI Methodol, Aachen, Germany
基金
澳大利亚研究理事会;
关键词
Quality diversity; Co-evolutionary algorithms; Evolutionary diversity optimisation; Traveling thief problem;
D O I
10.1007/978-3-031-14714-2_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently different evolutionary computation approaches have been developed that generate sets of high quality diverse solutions for a given optimisation problem. Many studies have considered diversity 1) as a mean to explore niches in behavioural space (quality diversity) or 2) to increase the structural differences of solutions (evolutionary diversity optimisation). In this study, we introduce a co-evolutionary algorithm to simultaneously explore the two spaces for the multi-component traveling thief problem. The results show the capability of the co-evolutionary algorithm to achieve significantly higher diversity compared to the baseline evolutionary diversity algorithms from the literature.
引用
收藏
页码:237 / 249
页数:13
相关论文
共 50 条
  • [11] Investigation of the Traveling Thief Problem
    Wuijts, Rogier Hans
    Thierens, Dirk
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 329 - 337
  • [12] Ionic electroactive polymer control using co-evolutionary optimisation
    Kim, H. J.
    Shin, J.
    Kang, S.
    Kim, S. J.
    Tahk, M.-J.
    ELECTRONICS LETTERS, 2007, 43 (16) : 859 - 860
  • [13] Approximate Approaches to the Traveling Thief Problem
    Faulkner, Hayden
    Polyakovskiy, Sergey
    Schultz, Tom
    Wagner, Markus
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 385 - 392
  • [14] Viral diversity and co-evolutionary dynamics across the ant phylogeny
    Flynn, Peter J.
    Moreau, Corrie S.
    MOLECULAR ECOLOGY, 2024, 33 (19)
  • [15] An Adaptive Co-Evolutionary Algorithm Based on Genotypic Diversity Measure
    Wang, MingZhao
    Wang, Xiaoli
    Wang, Yuping
    Wei, Zhen
    2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 21 - 24
  • [16] Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem
    Harder, Jonathan Gadea
    Neumann, Aneta
    Neumann, Frank
    PARALLEL PROBLEM SOLVING FROM NATURE-PSN XVIII, PPSN 2024, PT III, 2024, 15150 : 149 - 165
  • [17] Runtime Analysis of Competitive co-Evolutionary Algorithms for Maximin Optimisation of a Bilinear Function
    Lehre, Per Kristian
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 1408 - 1416
  • [18] Co-evolutionary modular neural networks for automatic problem decomposition
    Khare, VR
    Yao, X
    Sendhoff, B
    Jin, YC
    Wersing, H
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 2691 - 2698
  • [19] Robustness optimisation of aerocapture trajectory design using a hybrid co-evolutionary approach
    Vasile, M
    PROCEEDINGS OF THE 18TH INTERNATIONAL SYMPOSIUM ON SPACE FLIGHT DYNAMICS, 2004, 548 : 601 - 606
  • [20] Runtime Analysis of Competitive Co-evolutionary Algorithms for Maximin Optimisation of a Bilinear Function
    Lehre, Per Kristian
    ALGORITHMICA, 2024, 86 (07) : 2352 - 2392