Co-evolutionary Diversity Optimisation for the Traveling Thief Problem

被引:1
|
作者
Nikfarjam, Adel [1 ]
Neumann, Aneta [1 ]
Bossek, Jakob [2 ]
Neumann, Frank [1 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Optimisat & Logist, Adelaide, SA, Australia
[2] Rhein Westfal TH Aachen, Dept Comp Sci, AI Methodol, Aachen, Germany
基金
澳大利亚研究理事会;
关键词
Quality diversity; Co-evolutionary algorithms; Evolutionary diversity optimisation; Traveling thief problem;
D O I
10.1007/978-3-031-14714-2_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently different evolutionary computation approaches have been developed that generate sets of high quality diverse solutions for a given optimisation problem. Many studies have considered diversity 1) as a mean to explore niches in behavioural space (quality diversity) or 2) to increase the structural differences of solutions (evolutionary diversity optimisation). In this study, we introduce a co-evolutionary algorithm to simultaneously explore the two spaces for the multi-component traveling thief problem. The results show the capability of the co-evolutionary algorithm to achieve significantly higher diversity compared to the baseline evolutionary diversity algorithms from the literature.
引用
收藏
页码:237 / 249
页数:13
相关论文
共 50 条
  • [21] Socially Inspired Algorithms for the Traveling Thief Problem
    Bonyadi, Mohammad Reza
    Michalewicz, Zbigniew
    Przybylek, Michal Roman
    Wierzbicki, Adam
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 421 - 428
  • [22] Co-evolutionary algorithm with a region-based diversity enhancement strategy
    Kangshun Li
    RuoLin Ruan
    Shumin Xie
    Hui Wang
    Complex & Intelligent Systems, 2025, 11 (5)
  • [23] Optimal Co-evolutionary Strategies for the Competitive Maritime Network Design Problem
    Dimitriou, Kas
    Stathopoulos, Antony
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2009, 5484 : 818 - 827
  • [24] A CO-EVOLUTIONARY THEORY OF SLEEP
    KORTH, C
    MEDICAL HYPOTHESES, 1995, 45 (03) : 304 - 310
  • [25] Timing co-evolutionary path optimisation method for emergency vehicles considering the safe passage
    Wu, Jiabin
    Lin, Yifeng
    Qi, Weiwei
    TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2023,
  • [26] Runtime Analysis of a Co-Evolutionary Algorithm: Overcoming Negative Drift in Maximin-Optimisation
    Fajardo, Mario Alejandro Hevia
    Lehre, Per Kristian
    Lin, Shishen
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 819 - 822
  • [27] Co-evolutionary algorithm based on problem analysis for dynamic multiobjective optimization
    Li, Xiaoli
    Cao, Anran
    Wang, Kang
    Li, Xin
    Liu, Quanbo
    INFORMATION SCIENCES, 2023, 634 : 520 - 538
  • [28] A parallel co-evolutionary metaheuristic
    Bachelet, V
    Talbi, EG
    PARALLEL AND DISTRIBUTED PROCESSING, PROCEEDINGS, 2000, 1800 : 628 - 635
  • [29] Internationalisation: A co-evolutionary perspective
    Pajunen, Kalle
    Maunula, Mari
    SCANDINAVIAN JOURNAL OF MANAGEMENT, 2008, 24 (03) : 247 - 258
  • [30] A Competitive Co-evolutionary Optimization Method for the Dynamic Vehicle Routing Problem
    Lu, Xiaofen
    Tang, Ke
    Menzel, Stefan
    Yao, Xin
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 305 - 312