Co-evolutionary Diversity Optimisation for the Traveling Thief Problem

被引:1
|
作者
Nikfarjam, Adel [1 ]
Neumann, Aneta [1 ]
Bossek, Jakob [2 ]
Neumann, Frank [1 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Optimisat & Logist, Adelaide, SA, Australia
[2] Rhein Westfal TH Aachen, Dept Comp Sci, AI Methodol, Aachen, Germany
基金
澳大利亚研究理事会;
关键词
Quality diversity; Co-evolutionary algorithms; Evolutionary diversity optimisation; Traveling thief problem;
D O I
10.1007/978-3-031-14714-2_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently different evolutionary computation approaches have been developed that generate sets of high quality diverse solutions for a given optimisation problem. Many studies have considered diversity 1) as a mean to explore niches in behavioural space (quality diversity) or 2) to increase the structural differences of solutions (evolutionary diversity optimisation). In this study, we introduce a co-evolutionary algorithm to simultaneously explore the two spaces for the multi-component traveling thief problem. The results show the capability of the co-evolutionary algorithm to achieve significantly higher diversity compared to the baseline evolutionary diversity algorithms from the literature.
引用
收藏
页码:237 / 249
页数:13
相关论文
共 50 条
  • [1] Evolutionary Diversity Optimisation for The Traveling Thief Problem
    Nikfarjam, Adel
    Neumann, Aneta
    Neumann, Frank
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 749 - 756
  • [2] A New Co-evolutionary Genetic Algorithm for Traveling Salesman Problem
    Qiang, Zhu
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON ELECTRONIC COMMERCE AND SECURITY, 2008, : 796 - 799
  • [3] Entropy-Based Evolutionary Diversity Optimisation for the Traveling Salesperson Problem
    Nikfarjam, Adel
    Bossek, Jakob
    Neumann, Aneta
    Neumann, Frank
    PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 600 - 608
  • [4] A Hybrid Evolutionary Approach for Solving the Traveling Thief Problem
    Moeini, Mahdi
    Schermer, Daniel
    Wendt, Oliver
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT II, 2017, 10405 : 652 - 668
  • [5] On the Use of Quality Diversity Algorithms for The Traveling Thief Problem
    Nikfarjam, Adel
    Neumann, Aneta
    Neumann, Frank
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 260 - 268
  • [6] Bi-distinctive-population co-evolutionary genetic algorithm for traveling salesman problem
    Lin, Dong-Mei
    Wang, Dong
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 924 - +
  • [7] The benefits of co-evolutionary Genetic Algorithms in voyage optimisation
    Khan, Saima
    Grudniewski, Przemyslaw
    Muhammad, Yousaf Shad
    Sobey, Adam J.
    OCEAN ENGINEERING, 2022, 245
  • [8] An immune co-evolutionary algorithm for N-th agent's Traveling Salesman Problem
    Toma, N
    Endo, S
    Yamada, K
    2003 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, VOLS I-III, PROCEEDINGS, 2003, : 1503 - 1508
  • [9] A co-evolutionary approach to graph coloring problem
    Lucas, C.
    Shahmirzadi, D.
    Biglarbegian, M.
    Amirkabir (Journal of Science and Technology), 2003, 13 (54 A): : 363 - 369
  • [10] A co-evolutionary matheuristic for the car stochastic problem
    Oliveira, Beatriz B.
    Carravilla, Maria Antonia
    Oliveira, Jose F.
    Costa, Alysson M.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 276 (02) : 637 - 655