Metallic Metal-Organic Frameworks Predicted by the Combination of Machine Learning Methods and Ab Initio Calculations

被引:97
|
作者
He, Yuping [1 ]
Cubuk, Ekin D. [2 ]
Allendorf, Mark D. [1 ]
Reed, Evan J. [3 ]
机构
[1] Sandia Natl Labs, Livermore, CA 94551 USA
[2] Google Brain, Mountain View, CA 94043 USA
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
来源
关键词
ELECTRICAL-CONDUCTIVITY; DISCOVERY; COMPLEXES; CRYSTAL; CLUSTER; MODEL; NI;
D O I
10.1021/acs.jpclett.8b01707
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Emerging applications of metal-organic frameworks (MOFs) in electronic devices will benefit from the design and synthesis of intrinsically, highly electronically conductive MOFs. However, very few are known to exist. It is a challenging task to search for electronically conductive MOFs within the tens of thousands of reported MOF structures. Using a new strategy (i.e., transfer learning) of combining machine learning techniques, statistical multivoting, and ab initio calculations, we screened 2932 MOFs and identified 6 MOF crystal structures that are metallic at the level of semilocal DFT band theory: Mn-2[Re6X8(CN)(6)](4) (X = S, Se,Te), Mn[Re3Te4(CN)(3)], Hg[SCN](4)Co[NCS](4), and CdC4. Five of these structures have been synthesized and reported in the literature, but their electrical characterization has not been reported. Our work demonstrates the potential power of machine learning in materials science to aid in down-selecting from large numbers of potential candidates and provides the information and guidance to accelerate the discovery of novel advanced materials.
引用
收藏
页码:4562 / 4569
页数:15
相关论文
共 50 条
  • [21] Prediction of Metal-Organic Frameworks with Phase Transition via Machine Learning
    Karsakov, Grigory V.
    Shirobokov, Vladimir P.
    Kulakova, Alena
    Milichko, Valentin A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (11): : 3089 - 3095
  • [22] Analyzing acetylene adsorption of metal-organic frameworks based on machine learning
    Peisong Yang
    Gang Lu
    Qingyuan Yang
    Lei Liu
    Xin Lai
    Duli Yu
    GreenEnergy&Environment, 2022, 7 (05) : 1062 - 1070
  • [23] Analyzing acetylene adsorption of metal-organic frameworks based on machine learning
    Yang, Peisong
    Lu, Gang
    Yang, Qingyuan
    Liu, Lei
    Lai, Xin
    Yu, Duli
    GREEN ENERGY & ENVIRONMENT, 2022, 7 (05) : 1062 - 1070
  • [24] Machine learning and descriptor selection for the computational discovery of metal-organic frameworks
    Mukherjee, Krishnendu
    Colon, Yamil J.
    MOLECULAR SIMULATION, 2021, 47 (10-11) : 857 - 877
  • [25] Ab initio predictions of carbon dioxide capture and gas separations using metal-organic frameworks
    Park, Joonho
    Kim, Heejin
    Jung, Yousung
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [26] Machine learning insights into predicting biogas separation in metal-organic frameworks
    Cooley, Isabel
    Boobier, Samuel
    Hirst, Jonathan D.
    Besley, Elena
    COMMUNICATIONS CHEMISTRY, 2024, 7 (01)
  • [27] Transfer learning for metal-organic frameworks
    Pan, Jie
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (4): : 280 - 280
  • [28] Metal-to-Semiconductor Transition in Two-Dimensional Metal-Organic Frameworks: An Ab Initio Dynamics Perspective
    Zhang, Zeyu
    Dell'Angelo, David
    Momeni, Mohammad R.
    Shi, Yuliang
    Shakib, Farnaz A.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (21) : 25270 - 25279
  • [29] Ab Initio Prediction of Metal-Organic Framework Structures
    Darby, James P.
    Arhangelskis, Mihails
    Katsenis, Athanassios D.
    Marrett, Joseph M.
    Friscic, Tomislav
    Morris, Andrew J.
    CHEMISTRY OF MATERIALS, 2020, 32 (13) : 5835 - 5844
  • [30] Structures and electronic properties of metal organic frameworks: DFT and ab initio FMO calculations for model systems
    Sugimoto, Takuya
    Mizushima, Tatsuroh
    Okamoto, Akisumi
    Kurita, Noriyuki
    CHEMICAL PHYSICS LETTERS, 2014, 612 : 295 - 301