Metallic Metal-Organic Frameworks Predicted by the Combination of Machine Learning Methods and Ab Initio Calculations

被引:97
|
作者
He, Yuping [1 ]
Cubuk, Ekin D. [2 ]
Allendorf, Mark D. [1 ]
Reed, Evan J. [3 ]
机构
[1] Sandia Natl Labs, Livermore, CA 94551 USA
[2] Google Brain, Mountain View, CA 94043 USA
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
来源
关键词
ELECTRICAL-CONDUCTIVITY; DISCOVERY; COMPLEXES; CRYSTAL; CLUSTER; MODEL; NI;
D O I
10.1021/acs.jpclett.8b01707
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Emerging applications of metal-organic frameworks (MOFs) in electronic devices will benefit from the design and synthesis of intrinsically, highly electronically conductive MOFs. However, very few are known to exist. It is a challenging task to search for electronically conductive MOFs within the tens of thousands of reported MOF structures. Using a new strategy (i.e., transfer learning) of combining machine learning techniques, statistical multivoting, and ab initio calculations, we screened 2932 MOFs and identified 6 MOF crystal structures that are metallic at the level of semilocal DFT band theory: Mn-2[Re6X8(CN)(6)](4) (X = S, Se,Te), Mn[Re3Te4(CN)(3)], Hg[SCN](4)Co[NCS](4), and CdC4. Five of these structures have been synthesized and reported in the literature, but their electrical characterization has not been reported. Our work demonstrates the potential power of machine learning in materials science to aid in down-selecting from large numbers of potential candidates and provides the information and guidance to accelerate the discovery of novel advanced materials.
引用
收藏
页码:4562 / 4569
页数:15
相关论文
共 50 条
  • [31] Porous lanthanide metal-organic frameworks with metallic conductivity
    Skorupskii, Grigorii
    Le, Khoa N.
    Cordova, Dmitri Leo Mesoza
    Yang, Luming
    Chen, Tianyang
    Hendon, Christopher H.
    Arguilla, Maxx Q.
    Dinca, Mircea
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (34)
  • [32] Ab Initio Study of Hydrostable Metal-Organic Frameworks for Postsynthetic Modification and Tuning toward Practical Applications
    Anene, Uchenna A.
    Alpay, S. Pamir
    ACS OMEGA, 2022, 7 (09): : 7791 - 7805
  • [33] Ab Initio Adsorption Isotherms for Molecules with Lateral Interactions: CO2 in Metal-Organic Frameworks
    Sillar, Kaido
    Kundu, Arpan
    Sauer, Joachim
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (23): : 12789 - 12799
  • [34] Ab Initio Flexible Force Field for Metal-Organic Frameworks Using Dummy Model Coordination Bonds
    Jawahery, Sudi
    Rampal, Nakul
    Moosavi, Seyed Mohamad
    Witman, Matthew
    Smit, Berend
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (06) : 3666 - 3677
  • [35] Expanding the Knowledge of the Selective-Sensing Mechanism of Nitro Compounds by Luminescent Terbium Metal-Organic Frameworks through Multiconfigurational ab Initio Calculations
    Hidalgo-Rosa, Yoan
    Mena-Ulecia, Karel
    Treto-Suarez, Manuel A.
    Schott, Eduardo
    Paez-Hernandez, Dayan
    Zarate, Ximena
    JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 126 (39): : 7040 - 7050
  • [36] Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks
    Cohen, Seth M.
    CHEMICAL REVIEWS, 2012, 112 (02) : 970 - 1000
  • [37] Machine Learning for Gas Adsorption in Metal-Organic Frameworks: A Review on Predictive Descriptors
    Sung, I-Ting
    Cheng, Ya-Hung
    Hsieh, Chieh-Ming
    Lin, Li-Chiang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2025, 64 (04) : 1859 - 1875
  • [38] Metal-Organic Frameworks for Xylene Separation: From Computational Screening to Machine Learning
    Quo, Zhiwei
    Yan, Yaling
    Tang, Yaxing
    Liang, Hong
    Jiang, Jianwen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (14): : 7839 - 7848
  • [39] Machine-Learning-Guided Morphology Engineering of Nanoscale Metal-Organic Frameworks
    Chen, Peican
    Tang, Zeyu
    Zeng, Zhongming
    Hu, Xuefu
    Xiao, Liangping
    Liu, Yi
    Qian, Xudong
    Deng, Chunyu
    Huang, Ruiyun
    Zhang, Jingzheng
    Bi, Yilong
    Lin, Rongkun
    Zhou, Yang
    Liao, Honggang
    Zhou, Da
    Wang, Cheng
    Lin, Wenbin
    MATTER, 2020, 2 (06) : 1651 - 1666
  • [40] From Data to Discovery: Recent Trends of Machine Learning in Metal-Organic Frameworks
    Park, Junkil
    Kim, Honghui
    Kang, Yeonghun
    Lim, Yunsung
    Kim, Jihan
    JACS AU, 2024, 4 (10): : 3727 - 3743