Prediction of Metal-Organic Frameworks with Phase Transition via Machine Learning

被引:2
|
作者
Karsakov, Grigory V. [1 ]
Shirobokov, Vladimir P. [1 ]
Kulakova, Alena [1 ]
Milichko, Valentin A. [1 ,2 ]
机构
[1] ITMO Univ, Sch Phys & Engn, St Petersburg 197101, Russia
[2] Univ Lorraine, Inst Jean Lamour, Ctr Natl Rech Sci CNRS, F-54000 Nancy, France
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 11期
基金
俄罗斯科学基金会;
关键词
CRYSTAL;
D O I
10.1021/acs.jpclett.3c03639
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) possess a virtually unlimited number of potential structures. Although the latter enables an efficient route to control the structure-related functional properties of MOFs, it still complicates the prediction and searching for an optimal structure for specific application. Next to prediction of the MOFs for gas sorption/separation and catalysis via machine learning (ML), we report on ML to find MOFs demonstrating a phase transition (PT). On the basis of an available QMOF database (7463 frameworks), we create and train the autoencoder followed by training the classifier of MOFs from a unique database with experimentally confirmed PT. This makes it possible to identify MOFs with a high potential for PT and evaluate the most likely stimulus for it (guest molecules or temperature/pressure). The formed list of available MOFs for PT allows us to discuss their structural features and opens an opportunity to search for phase change MOFs for diverse physical/chemical application.
引用
收藏
页码:3089 / 3095
页数:7
相关论文
共 50 条
  • [1] Prediction of water stability of metal-organic frameworks using machine learning
    Batra, Rohit
    Chen, Carmen
    Evans, Tania G.
    Walton, Krista S.
    Ramprasad, Rampi
    NATURE MACHINE INTELLIGENCE, 2020, 2 (11) : 704 - +
  • [2] Applications of machine learning in metal-organic frameworks
    Chong, Sanggyu
    Lee, Sangwon
    Kim, Baekjun
    Kim, Jihan
    COORDINATION CHEMISTRY REVIEWS, 2020, 423
  • [3] Machine Learning-Based Prediction of Proton Conductivity in Metal-Organic Frameworks
    Han, Seunghee
    Lee, Byoung Gwan
    Lim, Dae-Woon
    Kim, Jihan
    CHEMISTRY OF MATERIALS, 2024, 36 (22) : 11280 - 11287
  • [4] Leveraging Machine Learning for Metal-Organic Frameworks: A Perspective
    Tang, Hongjian
    Duan, Lunbo
    Jiang, Jianwen
    LANGMUIR, 2023, 39 (45) : 15849 - 15863
  • [5] Phase transition of metal-organic frameworks for the encapsulation of enzymes
    Ren, Zhen
    Zhou, Weiqiang
    Weng, Jiena
    Qin, Ziyue
    Liu, Liwei
    Ji, Ning
    Chen, Cheng
    Shi, Haohao
    Shi, Wenxiong
    Zhang, Xinglong
    Khalil, Islam E.
    Zheng, Bing
    Wu, Jiansheng
    Zhang, Weina
    Huo, Fengwei
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (37) : 19881 - 19892
  • [6] Structure-Mechanical Stability Relations of Metal-Organic Frameworks via Machine Learning
    Moghadam, Peyman Z.
    Rogge, Sven M. J.
    Li, Aurelia
    Chow, Chun-Man
    Wieme, Jelle
    Moharrami, Noushin
    Aragones-Anglada, Marta
    Conduit, Gareth
    Gomez-Gualdron, Diego A.
    Van Speybroeck, Veronique
    Fairen-Jimenez, David
    MATTER, 2019, 1 (01) : 219 - 234
  • [7] Machine learning improves metal-organic frameworks design and discovery
    Tamakloe, Senam
    MRS BULLETIN, 2022, 47 (09) : 886 - 886
  • [8] Phase Transition Induced by Gas Adsorption in Metal-Organic Frameworks
    Luna-Triguero, Azahara
    Manuel Vicent-Luna, Jose
    Calero, Sofia
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (34) : 8530 - 8534
  • [9] Prediction of Hydrogen Adsorption and Moduli of Metal-Organic Frameworks (MOFs) Using Machine Learning Strategies
    Borja, Nicole Kate
    Fabros, Christine Joy E.
    Doma Jr, Bonifacio T.
    ENERGIES, 2024, 17 (04)
  • [10] Metal-Organic Frameworks for Water Harvesting: Machine Learning-Based Prediction and Rapid Screening
    Zhang, Zhiming
    Tang, Hongjian
    Wang, Mao
    Lyu, Bohui
    Jiang, Zhongyi
    Jiang, Jianwen
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (21): : 8148 - 8160