Prediction of Metal-Organic Frameworks with Phase Transition via Machine Learning

被引:2
|
作者
Karsakov, Grigory V. [1 ]
Shirobokov, Vladimir P. [1 ]
Kulakova, Alena [1 ]
Milichko, Valentin A. [1 ,2 ]
机构
[1] ITMO Univ, Sch Phys & Engn, St Petersburg 197101, Russia
[2] Univ Lorraine, Inst Jean Lamour, Ctr Natl Rech Sci CNRS, F-54000 Nancy, France
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 11期
基金
俄罗斯科学基金会;
关键词
CRYSTAL;
D O I
10.1021/acs.jpclett.3c03639
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) possess a virtually unlimited number of potential structures. Although the latter enables an efficient route to control the structure-related functional properties of MOFs, it still complicates the prediction and searching for an optimal structure for specific application. Next to prediction of the MOFs for gas sorption/separation and catalysis via machine learning (ML), we report on ML to find MOFs demonstrating a phase transition (PT). On the basis of an available QMOF database (7463 frameworks), we create and train the autoencoder followed by training the classifier of MOFs from a unique database with experimentally confirmed PT. This makes it possible to identify MOFs with a high potential for PT and evaluate the most likely stimulus for it (guest molecules or temperature/pressure). The formed list of available MOFs for PT allows us to discuss their structural features and opens an opportunity to search for phase change MOFs for diverse physical/chemical application.
引用
收藏
页码:3089 / 3095
页数:7
相关论文
共 50 条
  • [31] Thermodynamics of the structural transition in metal-organic frameworks
    Rodriguez, J.
    Beurroies, I.
    Coulet, M. -V.
    Fabry, P.
    Devic, T.
    Serre, C.
    Denoyel, R.
    Llewellyn, P. L.
    DALTON TRANSACTIONS, 2016, 45 (10) : 4274 - 4282
  • [32] Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks
    Aditi S. Krishnapriyan
    Joseph Montoya
    Maciej Haranczyk
    Jens Hummelshøj
    Dmitriy Morozov
    Scientific Reports, 11
  • [33] The drug loading capacity prediction and cytotoxicity analysis of metal-organic frameworks using stacking algorithms of machine learning
    Wang, Yang
    He, Liqiang
    Wang, Meijing
    Yuan, Jiongpeng
    Wu, Siwei
    Li, Xiaojing
    Lin, Tong
    Huang, Zihui
    Li, Andi
    Yang, Yuhang
    Liu, Xujie
    He, Yan
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2024, 656
  • [34] Covalent Metal-Organic Frameworks: Fusion of Covalent Organic Frameworks and Metal-Organic Frameworks
    Wei, Rong-Jia
    Luo, Xiao
    Ning, Guo-Hong
    Li, Dan
    ACCOUNTS OF CHEMICAL RESEARCH, 2025, 58 (05) : 746 - 761
  • [35] Machine Learning for Gas Adsorption in Metal-Organic Frameworks: A Review on Predictive Descriptors
    Sung, I-Ting
    Cheng, Ya-Hung
    Hsieh, Chieh-Ming
    Lin, Li-Chiang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2025, 64 (04) : 1859 - 1875
  • [36] Metal-Organic Frameworks for Xylene Separation: From Computational Screening to Machine Learning
    Quo, Zhiwei
    Yan, Yaling
    Tang, Yaxing
    Liang, Hong
    Jiang, Jianwen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (14): : 7839 - 7848
  • [37] Machine-Learning-Guided Morphology Engineering of Nanoscale Metal-Organic Frameworks
    Chen, Peican
    Tang, Zeyu
    Zeng, Zhongming
    Hu, Xuefu
    Xiao, Liangping
    Liu, Yi
    Qian, Xudong
    Deng, Chunyu
    Huang, Ruiyun
    Zhang, Jingzheng
    Bi, Yilong
    Lin, Rongkun
    Zhou, Yang
    Liao, Honggang
    Zhou, Da
    Wang, Cheng
    Lin, Wenbin
    MATTER, 2020, 2 (06) : 1651 - 1666
  • [38] From Data to Discovery: Recent Trends of Machine Learning in Metal-Organic Frameworks
    Park, Junkil
    Kim, Honghui
    Kang, Yeonghun
    Lim, Yunsung
    Kim, Jihan
    JACS AU, 2024, 4 (10): : 3727 - 3743
  • [39] Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks
    Krishnapriyan, Aditi S.
    Montoya, Joseph
    Haranczyk, Maciej
    Hummelshoj, Jens
    Morozov, Dmitriy
    SCIENTIFIC REPORTS, 2021, 11 (01) : 8888
  • [40] Introduction of Thiourea into Metal-Organic Frameworks by Immersion Technique and Their Phase Transition Characteristics
    Yamada, Teppei
    Kubo, Yuta
    Kimizuka, Nobuo
    CHEMISTRY LETTERS, 2017, 46 (01) : 115 - 117