Prediction of Metal-Organic Frameworks with Phase Transition via Machine Learning

被引:2
|
作者
Karsakov, Grigory V. [1 ]
Shirobokov, Vladimir P. [1 ]
Kulakova, Alena [1 ]
Milichko, Valentin A. [1 ,2 ]
机构
[1] ITMO Univ, Sch Phys & Engn, St Petersburg 197101, Russia
[2] Univ Lorraine, Inst Jean Lamour, Ctr Natl Rech Sci CNRS, F-54000 Nancy, France
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 11期
基金
俄罗斯科学基金会;
关键词
CRYSTAL;
D O I
10.1021/acs.jpclett.3c03639
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) possess a virtually unlimited number of potential structures. Although the latter enables an efficient route to control the structure-related functional properties of MOFs, it still complicates the prediction and searching for an optimal structure for specific application. Next to prediction of the MOFs for gas sorption/separation and catalysis via machine learning (ML), we report on ML to find MOFs demonstrating a phase transition (PT). On the basis of an available QMOF database (7463 frameworks), we create and train the autoencoder followed by training the classifier of MOFs from a unique database with experimentally confirmed PT. This makes it possible to identify MOFs with a high potential for PT and evaluate the most likely stimulus for it (guest molecules or temperature/pressure). The formed list of available MOFs for PT allows us to discuss their structural features and opens an opportunity to search for phase change MOFs for diverse physical/chemical application.
引用
收藏
页码:3089 / 3095
页数:7
相关论文
共 50 条
  • [21] Machine learning insights into predicting biogas separation in metal-organic frameworks
    Cooley, Isabel
    Boobier, Samuel
    Hirst, Jonathan D.
    Besley, Elena
    COMMUNICATIONS CHEMISTRY, 2024, 7 (01)
  • [22] An Automated Machine Learning architecture for the accelerated prediction of Metal-Organic Frameworks performance in energy and environmental applications
    Tsamardinos, Ioannis
    Fanourgakis, George S.
    Greasidou, Elissavet
    Klontzas, Emmanuel
    Gkagkas, Konstantinos
    Froudakis, George E.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 300
  • [23] Combining machine learning and metal-organic frameworks research: Novel modeling, performance prediction, and materials discovery
    Li, Chunhua
    Bao, Luqian
    Ji, Yixin
    Tian, Zhehang
    Cui, Mengyao
    Shi, Yubo
    Zhao, Zhilei
    Wang, Xianyou
    COORDINATION CHEMISTRY REVIEWS, 2024, 514
  • [24] Transfer learning for metal-organic frameworks
    Pan, Jie
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (4): : 280 - 280
  • [25] Phase transition of metal-organic frameworks for regulating the fluorescence properties of dyes
    Qin, Ziyue
    Ren, Zhen
    Chen, Cheng
    Liu, Liwei
    Ji, Ning
    Zhao, Yanhua
    Zha, Baoli
    Fu, Yu
    Shen, Yu
    Huo, Fengwei
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (42) : 20056 - 20060
  • [26] Cooperative Gas Adsorption without a Phase Transition in Metal-Organic Frameworks
    Kundu, Joyjit
    Stilck, Jurgen F.
    Lee, Jung-Hoon
    Neaton, Jeffrey B.
    Prendergast, David
    Whitelam, Stephen
    PHYSICAL REVIEW LETTERS, 2018, 121 (01)
  • [27] Phase engineering of metal-organic frameworks
    Ma, Chen
    Zheng, Long
    Wang, Gang
    Guo, Jun
    Li, Liuxiao
    He, Qiyuan
    Chen, Ye
    Zhang, Hua
    AGGREGATE, 2022, 3 (01):
  • [28] Metal-organic frameworks as templates for transition metal clusters
    Turkiewicz, Ari
    Gonzalez, Miguel Carlos
    Darago, Lucy
    Long, Jeffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [29] Exploring metal-organic framework phase change materials via machine learning approach
    Shirobokov, Vladimir P.
    Karsakov, Grigory, V
    Milichko, Valentin A.
    MACHINE LEARNING IN PHOTONICS, 2024, 13017
  • [30] Prediction of water stability of metal–organic frameworks using machine learning
    Rohit Batra
    Carmen Chen
    Tania G. Evans
    Krista S. Walton
    Rampi Ramprasad
    Nature Machine Intelligence, 2020, 2 : 704 - 710