Prediction of Metal-Organic Frameworks with Phase Transition via Machine Learning

被引:2
|
作者
Karsakov, Grigory V. [1 ]
Shirobokov, Vladimir P. [1 ]
Kulakova, Alena [1 ]
Milichko, Valentin A. [1 ,2 ]
机构
[1] ITMO Univ, Sch Phys & Engn, St Petersburg 197101, Russia
[2] Univ Lorraine, Inst Jean Lamour, Ctr Natl Rech Sci CNRS, F-54000 Nancy, France
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 11期
基金
俄罗斯科学基金会;
关键词
CRYSTAL;
D O I
10.1021/acs.jpclett.3c03639
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) possess a virtually unlimited number of potential structures. Although the latter enables an efficient route to control the structure-related functional properties of MOFs, it still complicates the prediction and searching for an optimal structure for specific application. Next to prediction of the MOFs for gas sorption/separation and catalysis via machine learning (ML), we report on ML to find MOFs demonstrating a phase transition (PT). On the basis of an available QMOF database (7463 frameworks), we create and train the autoencoder followed by training the classifier of MOFs from a unique database with experimentally confirmed PT. This makes it possible to identify MOFs with a high potential for PT and evaluate the most likely stimulus for it (guest molecules or temperature/pressure). The formed list of available MOFs for PT allows us to discuss their structural features and opens an opportunity to search for phase change MOFs for diverse physical/chemical application.
引用
收藏
页码:3089 / 3095
页数:7
相关论文
共 50 条
  • [41] Molecular Scalpel to Chemically Cleave Metal-Organic Frameworks for Induced Phase Transition
    Zhou, Xianlong
    Dong, Juncai
    Zhu, Yihan
    Liu, Lingmei
    Jiao, Yan
    Li, Huan
    Han, Yu
    Davey, Kenneth
    Xu, Qiang
    Zheng, Yao
    Qiao, Shi-Zhang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (17) : 6681 - 6690
  • [42] Optimizing the prediction of adsorption in metal-organic frameworks leveraging Q-learning
    Osaro, Etinosa
    Colon, Yamil J.
    AICHE JOURNAL, 2024, 70 (12)
  • [43] Liquid phase blending of metal-organic frameworks
    Louis Longley
    Sean M. Collins
    Chao Zhou
    Glen J. Smales
    Sarah E. Norman
    Nick J. Brownbill
    Christopher W. Ashling
    Philip A. Chater
    Robert Tovey
    Carola-Bibiane Schönlieb
    Thomas F. Headen
    Nicholas J. Terrill
    Yuanzheng Yue
    Andrew J. Smith
    Frédéric Blanc
    David A. Keen
    Paul A. Midgley
    Thomas D. Bennett
    Nature Communications, 9
  • [44] Liquid phase blending of metal-organic frameworks
    Longley, Louis
    Collins, Sean M.
    Zhou, Chao
    Smales, Glen J.
    Norman, Sarah E.
    Brownbill, Nick J.
    Ashling, Christopher W.
    Chater, Philip A.
    Tovey, Robert
    Schonlieb, Carola-Bibiane
    Headen, Thomas F.
    Terrill, Nicholas J.
    Yue, Yuanzheng
    Smith, Andrew J.
    Blanc, Frederic
    Keen, David A.
    Midgley, Paul A.
    Bennett, Thomas D.
    NATURE COMMUNICATIONS, 2018, 9
  • [45] Homochiral metal-organic frameworks based on transition metal bisphosphonates
    Evans, OR
    Manke, DR
    Lin, WB
    CHEMISTRY OF MATERIALS, 2002, 14 (09) : 3866 - 3874
  • [46] Metal-Organic Frameworks for Liquid Phase Applications
    Nalaparaju, Anjaiah
    Jiang, Jianwen
    ADVANCED SCIENCE, 2021, 8 (05)
  • [47] Prediction of hydrogen uptake of metal organic frameworks using explainable machine learning
    Meduri, Sitaram
    Nandanavanam, Jalaiah
    ENERGY AND AI, 2023, 12
  • [48] Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks
    Prakash, M. Jaya
    Lah, Myoung Soo
    CHEMICAL COMMUNICATIONS, 2009, (23) : 3326 - 3341
  • [49] Thermal Stability of Metal-Organic Frameworks (MOFs): Concept, Determination, and Model Prediction Using Computational Chemistry and Machine Learning
    Escobar-Hernandez, Harold U.
    Perez, Lisa M.
    Hu, Pingfan
    Soto, Fernando A.
    Papadaki, Maria I.
    Zhou, Hong-Cai
    Wang, Qingsheng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (17) : 5853 - 5862
  • [50] Transition-Metal Interlink Neural Network: Machine Learning of 2D Metal-Organic Frameworks with High Magnetic Anisotropy
    Wang, Pengju
    Xing, Jianpei
    Jiang, Xue
    Zhao, Jijun
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (29) : 33726 - 33733