Convergence of λ-Bernstein operators based on (p, q)-integers

被引:15
|
作者
Cai, Qing-Bo [1 ]
Cheng, Wen-Tao [2 ]
机构
[1] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou, Peoples R China
[2] Anqing Normal Univ, Sch Math & Computat Sci, Anqing, Peoples R China
基金
中国国家自然科学基金;
关键词
lambda-Bernstein operators; (p; q)-integers; Moduli of continuity; Rate of convergence; Lipschitz continuous functions; APPROXIMATION PROPERTIES; STATISTICAL APPROXIMATION; Q)-ANALOG;
D O I
10.1186/s13660-020-2309-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we construct a new class of positive linear lambda-Bernstein operators based on (p, q)-integers. We obtain a Korovkin type approximation theorem, study the rate of convergence of these operators by using the conception of K-functional and moduli of continuity, and also give a convergence theorem for the Lipschitz continuous functions.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] THE CONVERGENCE OF q-BERNSTEIN POLYNOMIALS (0 < q < 1) AND LIMIT q-BERNSTEIN OPERATORS IN COMPLEX DOMAINS
    Ostrovska, Sofiya
    Wang, Heping
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (04) : 1279 - 1291
  • [42] Ibragimov–Gadjiev operators based on q-integers
    Serap Herdem
    Ibrahim Büyükyazıcı
    Advances in Difference Equations, 2018
  • [43] On Durrmeyer-type generalization of (p, q)-Bernstein operators
    Sharma, Honey
    ARABIAN JOURNAL OF MATHEMATICS, 2016, 5 (04) : 239 - 248
  • [44] Approximation by Bivariate (p, q)-Bernstein-Kantorovich Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 655 - 662
  • [45] (p, q)-Bernstein Bases and Operators over Arbitrary Intervals
    Khan, Asif
    Sharma, Vinita
    Khan, Khalid
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (04): : 1447 - 1456
  • [46] A basic problem of (p, q)-Bernstein-type operators
    Cai, Qing-Bo
    Xu, Xiao-Wei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [47] On Durrmeyer Type λ-Bernstein Operators via (p, q)-Calculus
    Cai, Qing-Bo
    Zhou, Guorong
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [48] Convergence of modification of the Kantorovich-type q-Bernstein-Schurer operators
    Cai, Qing-Bo
    Zhou, Guorong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (07) : 1261 - 1272
  • [49] SOME APPROXIMATION RESULTS FOR BERNSTEIN-KANTOROVICH OPERATORS BASED ON (p, q)-CALCULUS
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (04): : 129 - 142
  • [50] (p, q)-Bernstein Bases and Operators over Arbitrary Intervals
    Asif Khan
    Vinita Sharma
    Khalid Khan
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 1447 - 1456