Convergence of λ-Bernstein operators based on (p, q)-integers

被引:15
|
作者
Cai, Qing-Bo [1 ]
Cheng, Wen-Tao [2 ]
机构
[1] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou, Peoples R China
[2] Anqing Normal Univ, Sch Math & Computat Sci, Anqing, Peoples R China
基金
中国国家自然科学基金;
关键词
lambda-Bernstein operators; (p; q)-integers; Moduli of continuity; Rate of convergence; Lipschitz continuous functions; APPROXIMATION PROPERTIES; STATISTICAL APPROXIMATION; Q)-ANALOG;
D O I
10.1186/s13660-020-2309-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we construct a new class of positive linear lambda-Bernstein operators based on (p, q)-integers. We obtain a Korovkin type approximation theorem, study the rate of convergence of these operators by using the conception of K-functional and moduli of continuity, and also give a convergence theorem for the Lipschitz continuous functions.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] On Kantorovich Modification of (p, q)-Bernstein Operators
    Tuncer Acar
    Ali Aral
    S. A. Mohiuddine
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 1459 - 1464
  • [22] On Kantorovich Modification of (p, q)-Bernstein Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3): : 1459 - 1464
  • [23] Kantorovich Type Generalization of Bernstein Type Rational Functions Based on (p,q)-Integers
    Hamal, Hayatem
    Sabancigil, Pembe
    SYMMETRY-BASEL, 2022, 14 (05):
  • [24] Evaluation of Norm of (p, q)-Bernstein Operators
    Khan, Nabiullah
    Saif, Mohd
    Usman, Talha
    MATHEMATICA SLOVACA, 2023, 73 (02) : 455 - 464
  • [25] (p, q)-Genuine Bernstein Durrmeyer operators
    Gupta, Vijay
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2016, 9 (03): : 399 - 409
  • [26] The Rate of Convergence of Lupas q-Analogue of the Bernstein Operators
    Wang, Heping
    Zhang, Yanbo
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [27] A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers
    Chauhan, Ruchi
    Ispir, Nurhayat
    Agrawal, P. N.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [28] A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers
    Ruchi Chauhan
    Nurhayat Ispir
    PN Agrawal
    Journal of Inequalities and Applications, 2017
  • [29] A-Statistical Convergence Properties of Kantorovich Type λ-Bernstein Operators Via (p, q)-Calculus
    Zeng, Liang
    Cai, Qing-Bo
    Xu, Xiao-Wei
    MATHEMATICS, 2020, 8 (02)
  • [30] Rational Operators Based on q-Integers
    Umberto Amato
    Biancamaria Della Vecchia
    Results in Mathematics, 2017, 72 : 1109 - 1128