Convergence of λ-Bernstein operators based on (p, q)-integers

被引:15
|
作者
Cai, Qing-Bo [1 ]
Cheng, Wen-Tao [2 ]
机构
[1] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou, Peoples R China
[2] Anqing Normal Univ, Sch Math & Computat Sci, Anqing, Peoples R China
基金
中国国家自然科学基金;
关键词
lambda-Bernstein operators; (p; q)-integers; Moduli of continuity; Rate of convergence; Lipschitz continuous functions; APPROXIMATION PROPERTIES; STATISTICAL APPROXIMATION; Q)-ANALOG;
D O I
10.1186/s13660-020-2309-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we construct a new class of positive linear lambda-Bernstein operators based on (p, q)-integers. We obtain a Korovkin type approximation theorem, study the rate of convergence of these operators by using the conception of K-functional and moduli of continuity, and also give a convergence theorem for the Lipschitz continuous functions.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Rational Operators Based on q-Integers
    Amato, Umberto
    Della Vecchia, Biancamaria
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1109 - 1128
  • [32] APPROXIMATION BY MODIFIED LUPAS-STANCU OPERATORS BASED ON (p, q)-INTEGERS
    Khan, A.
    Abbas, Z.
    Qasim, M.
    Mursaleen, M.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (02): : 39 - 51
  • [33] Approximation properties of (p, q)-Bernstein type operators
    Finta, Zoltan
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (02) : 222 - 232
  • [34] (p, q)-Bivariate-Bernstein-Chlodowsky Operators
    Rao, Nadeem
    Wafi, Abdul
    FILOMAT, 2018, 32 (02) : 369 - 378
  • [35] King Type (p, q)-Bernstein Schurer Operators
    Bawa, Parveen
    Bhardwaj, Neha
    Bhatia, Sumit Kaur
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (03): : 431 - 443
  • [36] Approximation by Bivariate (p, q)-Bernstein–Kantorovich Operators
    Tuncer Acar
    Ali Aral
    S. A. Mohiuddine
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 655 - 662
  • [37] On approximation properties of generalised (p, q)-Bernstein operators
    Karahan, Done
    Izgi, Aydin
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 11 (02): : 457 - 467
  • [38] RATE OF CONVERGENCE OF q - ANALOGUE OF A CLASS OF NEW BERNSTEIN TYPE OPERATORS
    Deshwal, Sheetal
    Acu, Ana Maria
    Agrawal, P. N.
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 211 - 234
  • [39] Some approximation properties of (p, q)-Bernstein operators
    Kang, Shin Min
    Rafiq, Arif
    Acu, Ana-Maria
    Ali, Faisal
    Kwun, Young Chel
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [40] Convergence of rational Bernstein operators
    Render, Hermann
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1076 - 1089