Partially linear functional quantile regression in a reproducing kernel Hilbert space

被引:4
|
作者
Zhou, Yan [1 ]
Zhang, Weiping [2 ]
Lin, Hongmei [3 ]
Lian, Heng [4 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Inst Stat Sci, Shenzhen, Peoples R China
[2] USTC, Dept Stat, Hefei, Peoples R China
[3] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
[4] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence rate; prediction risk; quantile regression; rademacher complexity; MODELS; PREDICTION;
D O I
10.1080/10485252.2022.2073354
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider quantile functional regression with a functional part and a scalar linear part. We establish the optimal prediction rate for the model under mild assumptions in the reproducing kernel Hilbert space (RKHS) framework. Under stronger assumptions related to the capacity of the RKHS, the non-functional linear part is shown to have asymptotic normality. The estimators are illustrated in simulation studies.
引用
收藏
页码:789 / 803
页数:15
相关论文
共 50 条
  • [41] An Example of a Reproducing Kernel Hilbert Space
    Tutaj, Edward
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (01) : 193 - 221
  • [42] Estimation in Partially Observed Functional Linear Quantile Regression
    Xiao Juxia
    Xie Tianfa
    Zhang Zhongzhan
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2022, 35 (01) : 313 - 341
  • [43] An Example of a Reproducing Kernel Hilbert Space
    Edward Tutaj
    Complex Analysis and Operator Theory, 2019, 13 : 193 - 221
  • [44] Superposed Linear Representation in Reproducing Kernel Hilbert Space for Image Classification
    Meng, Jie
    Liu, Baodi
    Yao, Libo
    Wang, Tiantian
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 166 - 171
  • [45] Non-linear Wiener filter in reproducing kernel Hilbert space
    Washizawa, Yoshikazu
    Yamashita, Yukihiko
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2006, : 967 - +
  • [46] A Reproducing Kernel Hilbert Space Approach to Functional Calibration of Computer Models
    Tuo, Rui
    He, Shiyuan
    Pourhabib, Arash
    Ding, Yu
    Huang, Jianhua Z.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 883 - 897
  • [47] Choosing shape parameters for regression in reproducing kernel Hilbert space and variable selection
    Tan, Xin
    Xia, Yingcun
    Kong, Efang
    JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (03) : 514 - 528
  • [48] Reproducing Kernel Hilbert Space Approach to Multiresponse Smoothing Spline Regression Function
    Lestari, Budi
    Chamidah, Nur
    Aydin, Dursun
    Yilmaz, Ersin
    SYMMETRY-BASEL, 2022, 14 (11):
  • [49] Reproducing kernel-based functional linear expectile regression
    Liu, Meichen
    Pietrosanu, Matthew
    Liu, Peng
    Jiang, Bei
    Zhou, Xingcai
    Kong, Linglong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 241 - 266
  • [50] Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space
    Xie, Haihan
    Kong, Linglong
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 198