Partially linear functional quantile regression in a reproducing kernel Hilbert space

被引:4
|
作者
Zhou, Yan [1 ]
Zhang, Weiping [2 ]
Lin, Hongmei [3 ]
Lian, Heng [4 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Inst Stat Sci, Shenzhen, Peoples R China
[2] USTC, Dept Stat, Hefei, Peoples R China
[3] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
[4] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence rate; prediction risk; quantile regression; rademacher complexity; MODELS; PREDICTION;
D O I
10.1080/10485252.2022.2073354
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider quantile functional regression with a functional part and a scalar linear part. We establish the optimal prediction rate for the model under mild assumptions in the reproducing kernel Hilbert space (RKHS) framework. Under stronger assumptions related to the capacity of the RKHS, the non-functional linear part is shown to have asymptotic normality. The estimators are illustrated in simulation studies.
引用
收藏
页码:789 / 803
页数:15
相关论文
共 50 条
  • [31] Minimax designs for linear regression models with bias in a reproducing kernel Hilbert space in a discrete set
    Xiao-dong Zhou
    Rong-xian Yue
    Applied Mathematics-A Journal of Chinese Universities, 2015, 30 : 361 - 378
  • [32] Functional partially linear quantile regression model
    Lu, Ying
    Du, Jiang
    Sun, Zhimeng
    METRIKA, 2014, 77 (02) : 317 - 332
  • [33] Minimax designs for linear regression models with bias in a reproducing kernel Hilbert space in a discrete set
    ZHOU Xiao-dong
    YUE Rong-xian
    Applied Mathematics:A Journal of Chinese Universities, 2015, (03) : 361 - 378
  • [34] Minimax designs for linear regression models with bias in a reproducing kernel Hilbert space in a discrete set
    Zhou Xiao-dong
    Yue Rong-xian
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2015, 30 (03) : 361 - 378
  • [35] Minimax designs for linear regression models with bias in a reproducing kernel Hilbert space in a discrete set
    ZHOU Xiaodong
    YUE Rongxian
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2015, 30 (03) : 361 - 378
  • [36] Approximate nonparametric quantile regression in reproducing kernel Hilbert spaces via random projection
    Zhang, Fode
    Li, Rui
    Lian, Heng
    INFORMATION SCIENCES, 2021, 547 (547) : 244 - 254
  • [37] Regression models for functional data by reproducing kernel Hilbert spaces methods
    Preda, Cristian
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (03) : 829 - 840
  • [38] PARTIALLY FUNCTIONAL LINEAR QUANTILE REGRESSION WITH MEASUREMENT ERRORS
    Zhang, Mengli
    Xue, Lan
    Tekwe, Carmen D.
    Bai, Yang
    Qu, Annie
    STATISTICA SINICA, 2023, 33 (03) : 2257 - 2280
  • [39] Estimation in Partially Observed Functional Linear Quantile Regression
    XIAO Juxia
    XIE Tianfa
    ZHANG Zhongzhan
    JournalofSystemsScience&Complexity, 2022, 35 (01) : 313 - 341
  • [40] Estimation in Partially Observed Functional Linear Quantile Regression
    Juxia Xiao
    Tianfa Xie
    Zhongzhan Zhang
    Journal of Systems Science and Complexity, 2022, 35 : 313 - 341