Partially linear functional quantile regression in a reproducing kernel Hilbert space

被引:4
|
作者
Zhou, Yan [1 ]
Zhang, Weiping [2 ]
Lin, Hongmei [3 ]
Lian, Heng [4 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Inst Stat Sci, Shenzhen, Peoples R China
[2] USTC, Dept Stat, Hefei, Peoples R China
[3] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
[4] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence rate; prediction risk; quantile regression; rademacher complexity; MODELS; PREDICTION;
D O I
10.1080/10485252.2022.2073354
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider quantile functional regression with a functional part and a scalar linear part. We establish the optimal prediction rate for the model under mild assumptions in the reproducing kernel Hilbert space (RKHS) framework. Under stronger assumptions related to the capacity of the RKHS, the non-functional linear part is shown to have asymptotic normality. The estimators are illustrated in simulation studies.
引用
收藏
页码:789 / 803
页数:15
相关论文
共 50 条
  • [21] Quantile Regression with Left-Truncated and Right-Censored Data in a Reproducing Kernel Hilbert Space
    Park, Jinho
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (07) : 1523 - 1536
  • [22] Diagnostic measures for kernel ridge regression on reproducing kernel Hilbert space
    Kim, Choongrak
    Yang, Hojin
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (03) : 454 - 462
  • [23] Least squares kernel ensemble regression in Reproducing Kernel Hilbert Space
    Shen, Xiang-Jun
    Dong, Yong
    Gou, Jian-Ping
    Zhan, Yong-Zhao
    Fan, Jianping
    NEUROCOMPUTING, 2018, 311 : 235 - 244
  • [24] Diagnostic measures for kernel ridge regression on reproducing kernel Hilbert space
    Choongrak Kim
    Hojin Yang
    Journal of the Korean Statistical Society, 2019, 48 : 454 - 462
  • [25] Sparse high-dimensional semi-nonparametric quantile regression in a reproducing kernel Hilbert space
    Wang, Yue
    Zhou, Yan
    Li, Rui
    Lian, Heng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 168
  • [26] A Reproducing Kernel Hilbert Space Framework for Functional Classification
    Sang, Peijun
    Kashlak, Adam B.
    Kong, Linglong
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 1000 - 1008
  • [27] Distribution regression model with a Reproducing Kernel Hilbert Space approach
    Bui Thi Thien Trang
    Loubes, Jean-Michel
    Risser, Laurent
    Balaresque, Patricia
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (09) : 1955 - 1977
  • [28] Structured functional additive regression in reproducing kernel Hilbert spaces
    Zhu, Hongxiao
    Yao, Fang
    Zhang, Hao Helen
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (03) : 581 - 603
  • [29] On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power
    Gallego-Castillo, Cristobal
    Bessa, Ricardo
    Cavalcante, Laura
    Lopez-Garcia, Oscar
    ENERGY, 2016, 113 : 355 - 365
  • [30] Functional partially linear quantile regression model
    Ying Lu
    Jiang Du
    Zhimeng Sun
    Metrika, 2014, 77 : 317 - 332