Partially linear functional quantile regression in a reproducing kernel Hilbert space

被引:4
|
作者
Zhou, Yan [1 ]
Zhang, Weiping [2 ]
Lin, Hongmei [3 ]
Lian, Heng [4 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Inst Stat Sci, Shenzhen, Peoples R China
[2] USTC, Dept Stat, Hefei, Peoples R China
[3] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
[4] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence rate; prediction risk; quantile regression; rademacher complexity; MODELS; PREDICTION;
D O I
10.1080/10485252.2022.2073354
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider quantile functional regression with a functional part and a scalar linear part. We establish the optimal prediction rate for the model under mild assumptions in the reproducing kernel Hilbert space (RKHS) framework. Under stronger assumptions related to the capacity of the RKHS, the non-functional linear part is shown to have asymptotic normality. The estimators are illustrated in simulation studies.
引用
收藏
页码:789 / 803
页数:15
相关论文
共 50 条
  • [1] Partially functional linear regression in reproducing kernel Hilbert spaces
    Cui, Xia
    Lin, Hongmei
    Lian, Heng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 150
  • [2] Functional quantile regression with missing data in reproducing kernel Hilbert space
    Yu, Xiao-Ge
    Liang, Han-Ying
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [3] Fast quantile regression in reproducing kernel Hilbert space
    Zheng, Songfeng
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 568 - 588
  • [4] Fast quantile regression in reproducing kernel Hilbert space
    Songfeng Zheng
    Journal of the Korean Statistical Society, 2022, 51 : 568 - 588
  • [5] A REPRODUCING KERNEL HILBERT SPACE APPROACH TO FUNCTIONAL LINEAR REGRESSION
    Yuan, Ming
    Cai, T. Tony
    ANNALS OF STATISTICS, 2010, 38 (06): : 3412 - 3444
  • [6] Optimal prediction of quantile functional linear regression in reproducing kernel Hilbert spaces
    Li, Rui
    Lu, Wenqi
    Zhu, Zhongyi
    Lian, Heng
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 211 : 162 - 170
  • [7] Quantile regression in reproducing kernel Hilbert spaces
    Li, Youjuan
    Liu, Yufeng
    Zhu, Ji
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 255 - 268
  • [8] FUNCTIONAL SLICED INVERSE REGRESSION IN A REPRODUCING KERNEL HILBERT SPACE: A THEORETICAL CONNECTION TO FUNCTIONAL LINEAR REGRESSION
    Wang, Guochang
    Lian, Heng
    STATISTICA SINICA, 2020, 30 (01) : 17 - 33
  • [9] Asynchronous functional linear regression models for longitudinal data in reproducing kernel Hilbert space
    Li, Ting
    Zhu, Huichen
    Li, Tengfei
    Zhu, Hongtu
    BIOMETRICS, 2023, 79 (03) : 1880 - 1895
  • [10] Quantile regression with an epsilon-insensitive loss in a reproducing kernel Hilbert space
    Park, Jinho
    Kim, Jeankyung
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (01) : 62 - 70