A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials

被引:33
|
作者
Kim, D. [1 ]
Kim, T. [2 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
[2] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
基金
新加坡国家研究基金会;
关键词
Mathematical Physic; Formal Power Series; Bernoulli Polynomial; Usual Convention; Polylogarithm Function;
D O I
10.1134/S1061920815010057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider poly-Bernoulli and higher-order poly-Bernoulli polynomials and derive some new and interesting identities of those polynomials by using umbral calculus.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 50 条
  • [41] Symmetrized Poly-Bernoulli Numbers and Combinatorics
    Matsusaka, Toshiki
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (09)
  • [42] Degenerate poly-Bernoulli polynomials arising from degenerate polylogarithm
    Kim, Taekyun
    Kim, Dansan
    Kim, Han-Young
    Lee, Hyunseok
    Jang, Lee-Chae
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [43] THE ARAKAWA-KANEKO ZETA FUNCTION AND POLY-BERNOULLI POLYNOMIALS
    Hamahata, Yoshinori
    GLASNIK MATEMATICKI, 2013, 48 (02) : 249 - 263
  • [44] On the type 2 poly-Bernoulli polynomials associated with umbral calculus
    Kim, Taekyun
    San Kim, Dae
    Dolgy, Dmitry, V
    Park, Jin-Woo
    OPEN MATHEMATICS, 2021, 19 (01): : 878 - 887
  • [45] Closed formula for poly-Bernoulli numbers
    Sánchez-Peregrino, R
    FIBONACCI QUARTERLY, 2002, 40 (04): : 362 - 364
  • [46] Representations of modified type 2 degenerate poly-Bernoulli polynomials
    Kwon, Jongkyum
    Wongsason, Patcharee
    Kim, Yunjae
    Kim, Dojin
    AIMS MATHEMATICS, 2022, 7 (06): : 11443 - 11463
  • [47] Degenerate poly-Bernoulli polynomials arising from degenerate polylogarithm
    Taekyun Kim
    Dansan Kim
    Han-Young Kim
    Hyunseok Lee
    Lee-Chae Jang
    Advances in Difference Equations, 2020
  • [48] On Poly-Bernoulli polynomials of the second kind with umbral calculus viewpoint
    Kim, Dae San
    Kim, Taekyun
    Mansour, Toufik
    Dolgy, Dmitry V.
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 13
  • [49] On Poly-Bernoulli polynomials of the second kind with umbral calculus viewpoint
    Dae San Kim
    Taekyun Kim
    Toufik Mansour
    Dmitry V Dolgy
    Advances in Difference Equations, 2015
  • [50] Poly-Bernoulli Numbers and Eulerian Numbers
    Benyi, Beata
    Hajnal, Peter
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (06)