A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials

被引:33
|
作者
Kim, D. [1 ]
Kim, T. [2 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
[2] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
基金
新加坡国家研究基金会;
关键词
Mathematical Physic; Formal Power Series; Bernoulli Polynomial; Usual Convention; Polylogarithm Function;
D O I
10.1134/S1061920815010057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider poly-Bernoulli and higher-order poly-Bernoulli polynomials and derive some new and interesting identities of those polynomials by using umbral calculus.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 50 条
  • [21] DEGENERATE POLY-BERNOULLI POLYNOMIALS OF THE SECOND KIND
    Dolgy, Dmitry V.
    Kim, Dae San
    Kim, Taekyun
    Mansour, Toufik
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (05) : 954 - 966
  • [22] Explicit formulae for sums of products of Bernoulli polynomials, including poly-Bernoulli polynomials
    Ken Kamano
    Takao Komatsu
    The Ramanujan Journal, 2014, 33 : 301 - 313
  • [23] A note on a closed formula for poly-Bernoulli numbers
    Sanchez-Peregrino, R
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (08): : 755 - 756
  • [24] Explicit formulae for sums of products of Bernoulli polynomials, including poly-Bernoulli polynomials
    Kamano, Ken
    Komatsu, Takao
    RAMANUJAN JOURNAL, 2014, 33 (02): : 301 - 313
  • [25] Probabilistic poly-Bernoulli numbers
    Liu, Wencong
    Ma, Yuankui
    Kim, Taekyun
    Kim, Dae San
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 840 - 856
  • [26] Barnes' multiple Bernoulli and poly-Bernoulli mixed-type polynomials
    Dolgy, Dmitry V.
    Kim, Dae San
    Kim, Taekyun
    Komatsu, Takao
    Lee, Sang-Hun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (05) : 933 - 951
  • [27] Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint
    Dae San Kim
    Taekyun Kim
    Hyuck In Kwon
    Toufik Mansour
    Journal of Inequalities and Applications, 2015
  • [28] Fully degenerate poly-Bernoulli polynomials with a q parameter
    Kim, Dae San
    Kim, Tae Kyun
    Mansour, Toufik
    Seo, Jong-Jin
    FILOMAT, 2016, 30 (04) : 1029 - 1035
  • [29] Hermite and poly-Bernoulli mixed-type polynomials
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2013
  • [30] COMBINATORICS OF POLY-BERNOULLI NUMBERS
    Benyi, Beata
    Hajnal, Peter
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2015, 52 (04) : 537 - 558