A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials

被引:33
|
作者
Kim, D. [1 ]
Kim, T. [2 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
[2] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
基金
新加坡国家研究基金会;
关键词
Mathematical Physic; Formal Power Series; Bernoulli Polynomial; Usual Convention; Polylogarithm Function;
D O I
10.1134/S1061920815010057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider poly-Bernoulli and higher-order poly-Bernoulli polynomials and derive some new and interesting identities of those polynomials by using umbral calculus.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 50 条
  • [31] Study of Degenerate Poly-Bernoulli Polynomials by λ-Umbral Calculus
    Jang, Lee-Chae
    San Kim, Dae
    Kim, Hanyoung
    Kim, Taekyun
    Lee, Hyunseok
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 129 (01): : 393 - 408
  • [32] Some applications of degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 415 - 421
  • [33] FULLY DEGENERATE HERMITE POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Khan, W. A.
    Nisar, K. S.
    Araci, S.
    Acikgoz, M.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 17 (06): : 461 - 478
  • [34] Generalized harmonic numbers via poly-Bernoulli polynomials
    Kargin, Levent
    Cenkci, Mehmet
    Dil, Ayhan
    Can, Mumun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 365 - 386
  • [35] Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint
    Kim, Dae San
    Kim, Taekyun
    Kwon, Hyuck In
    Mansour, Toufik
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [36] Hermite and poly-Bernoulli mixed-type polynomials
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [37] Study of degenerate poly-bernoulli polynomials by λ-umbral calculus
    Jang, Lee-Chae
    Kim, Dae San
    Kim, Hanyoung
    Kim, Taekyun
    Lee, Hyunseok
    CMES - Computer Modeling in Engineering and Sciences, 2021, 129 (01): : 393 - 408
  • [38] Note on poly-Bernoulli numbers and multiple zeta values
    Kaneko, Masanobu
    DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 118 - 124
  • [39] On Two Bivariate Kinds of Poly-Bernoulli and Poly-Genocchi Polynomials
    Ryoo, Cheon Seoung
    Khan, Waseem A.
    MATHEMATICS, 2020, 8 (03)
  • [40] Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers
    Benyi, Beata
    Matsusaka, Toshiki
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (03): : 917 - 939