REFINEMENT OF SEMINORM AND NUMERICAL RADIUS INEQUALITIES OF SEMI-HILBERTIAN SPACE OPERATORS

被引:6
|
作者
Bhunia, Pintu [1 ]
Nayak, Raj Kumar [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
关键词
A-numerical radius; A-adjoint operator; A-selfadjoint operator; positive operator;
D O I
10.1515/ms-2022-0067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a complex Hilbert space and A be a non-zero positive bounded linear operator on H. The main aim of this paper is to discuss a general method to develop A-operator seminorm and A-numerical radius inequalities of semi-Hilbertian space operators using the existing corresponding inequalities of bounded linear operators on H. Among many other inequalities we prove that if S, T, X is an element of B-A(H), i.e., if A-adjoint of S,T, X exist, then 2 parallel to S-#A XT parallel to(A) <= parallel to SS#A X + XTT#A parallel to(A). Further, we prove that if T is an element of B-A (H), then 1/4 parallel to(TT)-T-#A + TT#A parallel to(A) <= 1/8(parallel to T + T-#A parallel to(2)(A) + parallel to T - T-#A parallel to(2)(A)) <= 1/8 (parallel to T + T-#A parallel to(2)(A) + parallel to T - T-#A parallel to(2)(A)) + 1/8c(A)(2)(T + T-#A) + 1/8c(A)(2)(T - T-#A) <= omega(2)(A)(T). Here omega(A)(.), c(A)(.) and parallel to.parallel to(A) denote A-numerical radius, A-Crawford number and A-operator seminorm, respectively. (C) Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:969 / 976
页数:8
相关论文
共 50 条
  • [1] Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces
    Moslehian, M. S.
    Xu, Q.
    Zamani, A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 591 : 299 - 321
  • [2] A-numerical radius inequalities for semi-Hilbertian space operators
    Zamani, Ali
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 : 159 - 183
  • [3] SomeA-numerical radius inequalities for semi-Hilbertian space operators
    Chandra Rout, Nirmal
    Sahoo, Satyajit
    Mishra, Debasisha
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05): : 980 - 996
  • [4] INEQUALITIES FOR THE WEIGHTED A-NUMERICAL RADIUS OF SEMI-HILBERTIAN SPACE OPERATORS
    Gao, Fugen
    Liu, Xianqin
    OPERATORS AND MATRICES, 2023, 17 (02): : 343 - 354
  • [5] Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators
    Pintu Bhunia
    Raj Kumar Nayak
    Kallol Paul
    Results in Mathematics, 2021, 76
  • [6] Numerical Radius Inequalities for Products and Sums of Semi-Hilbertian Space Operators
    Bhunia, Pintu
    Feki, Kais
    Paul, Kallol
    FILOMAT, 2022, 36 (04) : 1415 - 1431
  • [7] Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators
    Bhunia, Pintu
    Nayak, Raj Kumar
    Paul, Kallol
    RESULTS IN MATHEMATICS, 2021, 76 (03)
  • [8] FURTHER IMPROVEMENTS OF GENERALIZED NUMERICAL RADIUS INEQUALITIES FOR SEMI-HILBERTIAN SPACE OPERATORS
    Feki, Kais
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (02) : 651 - 665
  • [9] A-numerical radius and A-norm inequalities for semi-Hilbertian space operators
    Qiao, Hongwei
    Hai, Guojun
    Bai, Eburilitu
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6891 - 6907
  • [10] IMPROVEMENTS OF A-NUMERICAL RADIUS FOR SEMI-HILBERTIAN SPACE OPERATORS
    Qiao, Hongwei
    Hai, Guojun
    Chen, Alatancang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 791 - 810