REFINEMENT OF SEMINORM AND NUMERICAL RADIUS INEQUALITIES OF SEMI-HILBERTIAN SPACE OPERATORS

被引:6
|
作者
Bhunia, Pintu [1 ]
Nayak, Raj Kumar [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
关键词
A-numerical radius; A-adjoint operator; A-selfadjoint operator; positive operator;
D O I
10.1515/ms-2022-0067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a complex Hilbert space and A be a non-zero positive bounded linear operator on H. The main aim of this paper is to discuss a general method to develop A-operator seminorm and A-numerical radius inequalities of semi-Hilbertian space operators using the existing corresponding inequalities of bounded linear operators on H. Among many other inequalities we prove that if S, T, X is an element of B-A(H), i.e., if A-adjoint of S,T, X exist, then 2 parallel to S-#A XT parallel to(A) <= parallel to SS#A X + XTT#A parallel to(A). Further, we prove that if T is an element of B-A (H), then 1/4 parallel to(TT)-T-#A + TT#A parallel to(A) <= 1/8(parallel to T + T-#A parallel to(2)(A) + parallel to T - T-#A parallel to(2)(A)) <= 1/8 (parallel to T + T-#A parallel to(2)(A) + parallel to T - T-#A parallel to(2)(A)) + 1/8c(A)(2)(T + T-#A) + 1/8c(A)(2)(T - T-#A) <= omega(2)(A)(T). Here omega(A)(.), c(A)(.) and parallel to.parallel to(A) denote A-numerical radius, A-Crawford number and A-operator seminorm, respectively. (C) Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:969 / 976
页数:8
相关论文
共 50 条
  • [41] An extension of Birkhoff-James orthogonality relations in semi-Hilbertian space operators
    Enderami, S. Mojtaba
    Abtahi, Mortaza
    Zamani, And A.L.I.
    arXiv, 2022,
  • [42] An Extension of Birkhoff-James Orthogonality Relations in Semi-Hilbertian Space Operators
    Enderami, S. Mojtaba
    Abtahi, Mortaza
    Zamani, Ali
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (05)
  • [43] Davis-Wielandt shells of semi-Hilbertian space operators and its applications
    Feki, Kais
    Mahmoud, Sid Ahmed Ould Ahmed
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (03) : 1281 - 1304
  • [44] Orthogonality and norm attainment of operators in semi-Hilbertian spaces
    Sen, Jeet
    Sain, Debmalya
    Paul, Kallol
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (01)
  • [45] Orthogonality and norm attainment of operators in semi-Hilbertian spaces
    Jeet Sen
    Debmalya Sain
    Kallol Paul
    Annals of Functional Analysis, 2021, 12
  • [46] A-m-Isometric operators in semi-Hilbertian spaces
    Ahmed, Ould Ahmed Mahmoud Sid
    Saddi, Adel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) : 3930 - 3942
  • [47] Ergodic properties of operators in some semi-Hilbertian spaces
    Majdak, Witold
    Secelean, Nicolae-Adrian
    Suciu, Laurian
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (02): : 139 - 159
  • [48] SOME NUMERICAL RADIUS INEQUALITIES FOR SEMI-HILBERT SPACE OPERATORS
    Feki, Kais
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) : 1385 - 1405
  • [49] Spectral analysis of bounded operators on semi-Hilbertian spaces
    Baklouti, Hamadi
    Namouri, Sirine
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (01)
  • [50] On approximate orthogonality and symmetry of operators in semi-Hilbertian structure
    Sen, Jeet
    Sain, Debmalya
    Paul, Kallol
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 170