REFINEMENT OF SEMINORM AND NUMERICAL RADIUS INEQUALITIES OF SEMI-HILBERTIAN SPACE OPERATORS

被引:6
|
作者
Bhunia, Pintu [1 ]
Nayak, Raj Kumar [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
关键词
A-numerical radius; A-adjoint operator; A-selfadjoint operator; positive operator;
D O I
10.1515/ms-2022-0067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a complex Hilbert space and A be a non-zero positive bounded linear operator on H. The main aim of this paper is to discuss a general method to develop A-operator seminorm and A-numerical radius inequalities of semi-Hilbertian space operators using the existing corresponding inequalities of bounded linear operators on H. Among many other inequalities we prove that if S, T, X is an element of B-A(H), i.e., if A-adjoint of S,T, X exist, then 2 parallel to S-#A XT parallel to(A) <= parallel to SS#A X + XTT#A parallel to(A). Further, we prove that if T is an element of B-A (H), then 1/4 parallel to(TT)-T-#A + TT#A parallel to(A) <= 1/8(parallel to T + T-#A parallel to(2)(A) + parallel to T - T-#A parallel to(2)(A)) <= 1/8 (parallel to T + T-#A parallel to(2)(A) + parallel to T - T-#A parallel to(2)(A)) + 1/8c(A)(2)(T + T-#A) + 1/8c(A)(2)(T - T-#A) <= omega(2)(A)(T). Here omega(A)(.), c(A)(.) and parallel to.parallel to(A) denote A-numerical radius, A-Crawford number and A-operator seminorm, respectively. (C) Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:969 / 976
页数:8
相关论文
共 50 条
  • [21] A-Davis-Wielandt Radius Bounds of Semi-Hilbertian Space Operators
    Guesba, Messaoud
    Barik, Somdatta
    Bhunia, Pintu
    Paul, Kallol
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (06)
  • [22] Selberg and refinement type inequalities on semi-Hilbertian spaces
    EL-Fassi, Iz-iddine
    Chahbi, Abdellatif
    Kabbaj, Samir
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1201 - 1206
  • [23] Anderson?s theorem and A-spectral radius bounds for semi-Hilbertian space operators
    Bhunia, Pintu
    Kittaneh, Fuad
    Paul, Kallol
    Sen, Anirban
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 657 : 147 - 162
  • [24] (γ, δ)-B-Norm and B-Numerical Radius Inequalities in Semi-Hilbertian Spaces
    Ahmad, Naeem
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (5-6) : 1553 - 1564
  • [25] Essential numerical ranges of operators in semi-Hilbertian spaces
    Baklouti, A.
    Mabrouk, M.
    ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (01)
  • [26] A note on the A-numerical range of semi-Hilbertian operators
    Sen, Anirban
    Birbonshi, Riddhick
    Paul, Kallol
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 703 : 268 - 288
  • [27] Essential numerical ranges of operators in semi-Hilbertian spaces
    A. Baklouti
    M. Mabrouk
    Annals of Functional Analysis, 2022, 13
  • [28] Joint numerical ranges of operators in semi-Hilbertian spaces
    Baklouti, Hamadi
    Feki, Kais
    Ahmed, Ould Ahmed Mahmoud Sid
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 : 266 - 284
  • [29] New Semi-Norm of Semi-Hilbertian Space Operators and its Application
    Bhunia, Pintu
    Sen, Anirban
    Paul, Kallol
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (04) : 1149 - 1160
  • [30] Paranormal operators in semi-Hilbertian spaces
    Messaoud Guesba
    Sid Ahmed Ould Ahmed Mahmoud
    Afrika Matematika, 2020, 31 : 1409 - 1428