A-numerical radius inequalities for semi-Hilbertian space operators

被引:82
|
作者
Zamani, Ali [1 ]
机构
[1] Farhangian Univ, Dept Math, Tehran, Iran
关键词
Positive operator; Semi-inner product; A-adjoint operator; A-numerical radius; Inequality; M-ISOMETRIC OPERATORS; LOWER BOUNDS; EQUALITY; NORM;
D O I
10.1016/j.laa.2019.05.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a positive bounded operator on a Hilbert space (H, <., .>). The semi-inner product < x, y >(A) := < Ax, y >, x, y is an element of H induces a semi-norm parallel to . parallel to(A) on H. Let parallel to T parallel to(A) and w(A)(T) denote the A-operator semi-norm and the A-numerical radius of an operator T in semi-Hilbertian space (H, parallel to . parallel to(A)), respectively. In this paper, we prove the following characterization of w(A)(T) w(A)(T) = sup(alpha 2+beta 2=1) parallel to alpha T+T-#A/2 + beta T - T-#A/2i parallel to(A), where T-#A is a distinguished A-adjoint operator of T. We then apply it to find upper and lower bounds for w(A)(T). In particular, we show that 1/2 parallel to T parallel to(A) <= max {root 1 - vertical bar cos vertical bar T-2(A), root 2/2}w(A)(T) <= w(A)(T), where vertical bar cos vertical bar T-A denotes the A-cosine of angle of T. Some upper bounds for the A-numerical radius of commutators, anticommutators, and products of semi-Hilbertian space operators are also given. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:159 / 183
页数:25
相关论文
共 50 条
  • [1] Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators
    Pintu Bhunia
    Raj Kumar Nayak
    Kallol Paul
    Results in Mathematics, 2021, 76
  • [2] INEQUALITIES FOR THE WEIGHTED A-NUMERICAL RADIUS OF SEMI-HILBERTIAN SPACE OPERATORS
    Gao, Fugen
    Liu, Xianqin
    OPERATORS AND MATRICES, 2023, 17 (02): : 343 - 354
  • [3] Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators
    Bhunia, Pintu
    Nayak, Raj Kumar
    Paul, Kallol
    RESULTS IN MATHEMATICS, 2021, 76 (03)
  • [4] IMPROVEMENTS OF A-NUMERICAL RADIUS FOR SEMI-HILBERTIAN SPACE OPERATORS
    Qiao, Hongwei
    Hai, Guojun
    Chen, Alatancang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 791 - 810
  • [5] A-numerical radius and A-norm inequalities for semi-Hilbertian space operators
    Qiao, Hongwei
    Hai, Guojun
    Bai, Eburilitu
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6891 - 6907
  • [6] A-Numerical Radius and Product of Semi-Hilbertian Operators
    Zamani, Ali
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (02) : 371 - 377
  • [7] A-Numerical Radius and Product of Semi-Hilbertian Operators
    Ali Zamani
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 371 - 377
  • [8] A-Numerical Radius Orthogonality and Parallelism of Semi-Hilbertian Space Operators and Their Applications
    Bhunia, Pintu
    Feki, Kais
    Paul, Kallol
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (02) : 435 - 457
  • [9] A-Numerical Radius Orthogonality and Parallelism of Semi-Hilbertian Space Operators and Their Applications
    Pintu Bhunia
    Kais Feki
    Kallol Paul
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 435 - 457
  • [10] Correction to: A-Numerical Radius Orthogonality and Parallelism of Semi-Hilbertian Space Operators and Their Applications
    Pintu Bhunia
    Kais Feki
    Kallol Paul
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 459 - 460