Predicting the crystalline phase generation effectively in monosized granular matter using machine learning

被引:3
|
作者
Zhang, Yibo [1 ,2 ]
Ma, Gang [1 ,2 ]
Tang, Longwen [3 ]
Zhou, Wei [1 ,2 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Key Lab Rock Mech Hydraul Struct Engn, Minist Educ, Wuhan 430072, Peoples R China
[3] Univ Calif Los Angeles, Dept Civil & Environm Engn, Phys AmoRphous & Inorgan Solids Lab PARISlab, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金;
关键词
Granular matter; Machine learning; Crystallization; Structural features; Crystalline phase precursor; PACKING DENSITY; CRITICAL-STATE; NUCLEATION; MODEL; DYNAMICS; BEHAVIOR; LIQUIDS; KEPLER; SOIL; DEM;
D O I
10.1007/s10035-021-01176-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When monosized granular matter is subjected to continuous mechanical disturbance, crystallization can be observed. The granular crystallization process remains elusive and difficult to capture and forecast because of the complex interactions of particles and long periods of evolution. This study aims to establish a machine learning model that can effectively identify the crystalline phase precursors during the granular crystallization process. We simulate the cyclic shear test of a monosized sphere packing using the discrete element method. A machine learning (ML) model for predicting the generation of the crystalline phase is developed from particles' local structural information using the eXtreme Gradient Boosting algorithm. The predictive power of the ML model shows significant prediction horizon dependence. The local volume fraction is identified as one of the most important structural signatures in the crystalline phase generation. Our work presents a general and data-centric framework that could be used for granular crystallization problems.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Predicting Phishing Vulnerabilities Using Machine Learning
    Rutherford, Sarah
    Lin, Kevin
    Blaine, Raymond W.
    SOUTHEASTCON 2022, 2022, : 779 - 786
  • [42] Predicting hypertension control using machine learning
    Mroz, Thomas
    Griffin, Michael
    Cartabuke, Richard
    Laffin, Luke
    Russo-Alvarez, Giavanna
    Thomas, George
    Smedira, Nicholas
    Meese, Thad
    Shost, Michael
    Habboub, Ghaith
    PLOS ONE, 2024, 19 (03):
  • [43] Predicting the Mpemba effect using machine learning
    Amorim, Felipe
    Wisely, Joey
    Buckley, Nathan
    DiNardo, Christiana
    Sadasivan, Daniel
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [44] Predicting ASD Using Optimized Machine Learning
    Almana, Shaikhah
    Hammad, Mustafa
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1598 - 1602
  • [45] Predicting Hadoop misconfigurations using machine learning
    Robert, Andrew
    Gupta, Apaar
    Shenoy, Vinayak
    Sitaram, Dinkar
    Kalambur, Subramaniam
    SOFTWARE-PRACTICE & EXPERIENCE, 2020, 50 (07): : 1168 - 1183
  • [46] Predicting Diabetes Using Machine Learning Techniques
    Kirgil, Elif Nur Haner
    Erkal, Begum
    Ayyildiz, Tulin Ercelebi
    2022 INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED COMPUTER SCIENCE AND ENGINEERING (ICTASCE), 2022, : 137 - 141
  • [47] Predicting the Geoeffectiveness of CMEs Using Machine Learning
    Pricopi, Andreea-Clara
    Paraschiv, Alin Razvan
    Besliu-Ionescu, Diana
    Marginean, Anca-Nicoleta
    ASTROPHYSICAL JOURNAL, 2022, 934 (02):
  • [48] Predicting Kidney Discard Using Machine Learning
    Barah, Masoud
    Mehrotra, Sanjay
    TRANSPLANTATION, 2021, 105 (09) : 2054 - 2071
  • [49] Predicting apple bruising using machine learning
    Holmes, G
    Cunningham, SJ
    Dela Rue, BT
    Bollen, AF
    INTERNATIONAL SYMPOSIUM ON APPLICATIONS OF MODELLING AS AN INNOVATIVE TECHNOLOGY IN THE AGRI-FOOD-CHAIN - MODEL-IT, 1998, (476): : 289 - 296
  • [50] Predicting abatacept retention using machine learning
    Alten, Rieke
    Behar, Claire
    Merckaert, Pierre
    Afari, Ebenezer
    Vannier-Moreau, Virginie
    Ohayon, Anael
    Connolly, Sean E.
    Najm, Aurelie
    Juge, Pierre-Antoine
    Liu, Gengyuan
    Rai, Angshu
    Elbez, Yedid
    Lozenski, Karissa
    ARTHRITIS RESEARCH & THERAPY, 2025, 27 (01)