Predicting the crystalline phase generation effectively in monosized granular matter using machine learning

被引:3
|
作者
Zhang, Yibo [1 ,2 ]
Ma, Gang [1 ,2 ]
Tang, Longwen [3 ]
Zhou, Wei [1 ,2 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Key Lab Rock Mech Hydraul Struct Engn, Minist Educ, Wuhan 430072, Peoples R China
[3] Univ Calif Los Angeles, Dept Civil & Environm Engn, Phys AmoRphous & Inorgan Solids Lab PARISlab, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金;
关键词
Granular matter; Machine learning; Crystallization; Structural features; Crystalline phase precursor; PACKING DENSITY; CRITICAL-STATE; NUCLEATION; MODEL; DYNAMICS; BEHAVIOR; LIQUIDS; KEPLER; SOIL; DEM;
D O I
10.1007/s10035-021-01176-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When monosized granular matter is subjected to continuous mechanical disturbance, crystallization can be observed. The granular crystallization process remains elusive and difficult to capture and forecast because of the complex interactions of particles and long periods of evolution. This study aims to establish a machine learning model that can effectively identify the crystalline phase precursors during the granular crystallization process. We simulate the cyclic shear test of a monosized sphere packing using the discrete element method. A machine learning (ML) model for predicting the generation of the crystalline phase is developed from particles' local structural information using the eXtreme Gradient Boosting algorithm. The predictive power of the ML model shows significant prediction horizon dependence. The local volume fraction is identified as one of the most important structural signatures in the crystalline phase generation. Our work presents a general and data-centric framework that could be used for granular crystallization problems.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Predicting wind power generation using machine learning and CNN-LSTM approaches
    Malakouti, Seyed Matin
    Ghiasi, Amir Rikhtehgar
    Ghavifekr, Amir Aminzadeh
    Emami, Parvin
    WIND ENGINEERING, 2022, 46 (06) : 1853 - 1869
  • [22] Predicting medical waste generation and associated factors using machine learning in the Kingdom of Bahrain
    Al-Omran K.
    Khan E.
    Environmental Science and Pollution Research, 2024, 31 (26) : 38343 - 38357
  • [23] Predicting the impact of feedback on matter clustering with machine learning in CAMELS
    Delgado, Ana Maria
    Angles-Alcazar, Daniel
    Thiele, Leander
    Pandey, Shivam
    Lehman, Kai
    Somerville, Rachel S.
    Ntampaka, Michelle
    Genel, Shy
    Villaescusa-Navarro, Francisco
    Hernquist, Lars
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 526 (04) : 5306 - 5325
  • [24] Combination of machine learning and VIRS for predicting soil organic matter
    Dong, Zhenyu
    Wang, Ni
    Liu, Jinbao
    Xie, Jiancang
    Han, Jichang
    JOURNAL OF SOILS AND SEDIMENTS, 2021, 21 (07) : 2578 - 2588
  • [25] Combination of machine learning and VIRS for predicting soil organic matter
    Zhenyu Dong
    Ni Wang
    Jinbao Liu
    Jiancang Xie
    Jichang Han
    Journal of Soils and Sediments, 2021, 21 : 2578 - 2588
  • [26] Predicting the Physical Properties of Dark Matter Subhalos from Baryonic Parameters Using Machine Learning
    Reza, Moonzarin
    NEW ASTRONOMY, 2025, 115
  • [27] Understanding the Key Factors for Photoinduced Radical Generation in Crystalline Triphenylamines Using Experiment and Machine Learning
    Wijesekera, Gamage Isuri P.
    Gbadamosi, Fahidat A.
    Hossain, Muhammad Saddam
    Patra, Abhilash
    Sutton, Christopher
    Shimizu, Linda S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (39): : 16713 - 16720
  • [28] Machine learning for phase behavior in active matter systems
    Dulaney, Austin R.
    Brady, John F.
    SOFT MATTER, 2021, 17 (28) : 6808 - 6816
  • [29] Predicting Enthalpy of Combustion Using Machine Learning
    Jameel, Abdul Gani Abdul
    Al-Muslem, Ali
    Ahmad, Nabeel
    Alquaity, Awad B. S.
    Zahid, Umer
    Ahmed, Usama
    PROCESSES, 2022, 10 (11)
  • [30] Predicting glycosylation stereoselectivity using machine learning
    Moon, Sooyeon
    Chatterjee, Sourav
    Seeberger, Peter H.
    Gilmore, Kerry
    CHEMICAL SCIENCE, 2021, 12 (08) : 2931 - 2939