Predicting the crystalline phase generation effectively in monosized granular matter using machine learning

被引:3
|
作者
Zhang, Yibo [1 ,2 ]
Ma, Gang [1 ,2 ]
Tang, Longwen [3 ]
Zhou, Wei [1 ,2 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Key Lab Rock Mech Hydraul Struct Engn, Minist Educ, Wuhan 430072, Peoples R China
[3] Univ Calif Los Angeles, Dept Civil & Environm Engn, Phys AmoRphous & Inorgan Solids Lab PARISlab, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金;
关键词
Granular matter; Machine learning; Crystallization; Structural features; Crystalline phase precursor; PACKING DENSITY; CRITICAL-STATE; NUCLEATION; MODEL; DYNAMICS; BEHAVIOR; LIQUIDS; KEPLER; SOIL; DEM;
D O I
10.1007/s10035-021-01176-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When monosized granular matter is subjected to continuous mechanical disturbance, crystallization can be observed. The granular crystallization process remains elusive and difficult to capture and forecast because of the complex interactions of particles and long periods of evolution. This study aims to establish a machine learning model that can effectively identify the crystalline phase precursors during the granular crystallization process. We simulate the cyclic shear test of a monosized sphere packing using the discrete element method. A machine learning (ML) model for predicting the generation of the crystalline phase is developed from particles' local structural information using the eXtreme Gradient Boosting algorithm. The predictive power of the ML model shows significant prediction horizon dependence. The local volume fraction is identified as one of the most important structural signatures in the crystalline phase generation. Our work presents a general and data-centric framework that could be used for granular crystallization problems.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Predicting Happiness Index Using Machine Learning
    Akanbi, Kemi
    Jones, Yeboah
    Oluwadare, Sunkanmi
    Nti, Isaac Kofi
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [32] Using machine learning for predicting outcomes in ACLF
    Tonon, Marta
    Moreau, Richard
    LIVER INTERNATIONAL, 2022, 42 (11) : 2354 - 2355
  • [33] Predicting Packaging Sizes Using Machine Learning
    Heininger M.
    Ortner R.
    Operations Research Forum, 3 (3)
  • [34] Predicting mutational function using machine learning
    Shea, Anthony
    Bartz, Josh
    Zhang, Lei
    Dong, Xiao
    MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2023, 791
  • [35] Predicting IRI Using Machine Learning Techniques
    Sharma, Ankit
    Sachdeva, S. N.
    Aggarwal, Praveen
    INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2023, 16 (01) : 128 - 137
  • [36] Predicting Employee Attrition using Machine Learning
    Alduayj, Sarah S.
    Rajpoot, Kashif
    PROCEEDINGS OF THE 2018 13TH INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION TECHNOLOGY (IIT), 2018, : 93 - 98
  • [37] Predicting IRI Using Machine Learning Techniques
    Ankit Sharma
    S. N. Sachdeva
    Praveen Aggarwal
    International Journal of Pavement Research and Technology, 2023, 16 : 128 - 137
  • [38] Predicting the Price of Bitcoin Using Machine Learning
    McNally, Sean
    Roche, Jason
    Caton, Simon
    2018 26TH EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP 2018), 2018, : 339 - 343
  • [39] PREDICTING ASA SCORES USING MACHINE LEARNING
    Ramaswamy, Priya
    Pearson, John F.
    Raub, Dana
    Santer, Peter
    Eikermann, Matthias
    ANESTHESIA AND ANALGESIA, 2019, 128 : 947 - 948
  • [40] Predicting Atlantic Hurricanes Using Machine Learning
    Velasco Herrera, Victor Manuel
    Martell-Dubois, Raul
    Soon, Willie
    Velasco Herrera, Graciela
    Cerdeira-Estrada, Sergio
    Zuniga, Emmanuel
    Rosique-de la Cruz, Laura
    ATMOSPHERE, 2022, 13 (05)