Full-range k-domain linearization in spectral-domain optical coherence tomography

被引:66
|
作者
Jeon, Mansik [2 ]
Kim, Jeehyun [2 ]
Jung, Unsang [2 ]
Lee, Changho [2 ]
Jung, Woonggyu [1 ]
Boppart, Stephen A. [1 ,3 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[2] Kyungpook Natl Univ, Sch Elect Engn & Comp Sci, Taegu, South Korea
[3] Univ Illinois, Dept Elect & Comp Engn Bioengn & Internal Med, Urbana, IL 61801 USA
基金
美国国家卫生研究院; 新加坡国家研究基金会;
关键词
D O I
10.1364/AO.50.001158
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broad-band source or at the end of the sample path, and the filtered spectrum with a narrowed line width (similar to 0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function ( PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 mu m at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case. (C) 2011 Optical Society of America
引用
收藏
页码:1158 / 1163
页数:6
相关论文
共 50 条
  • [41] Doppler imaging with dual-detection full-range frequency domain optical coherence tomography
    Meemon, Panomsak
    Lee, Kye-Sung
    Rolland, Jannick P.
    BIOMEDICAL OPTICS EXPRESS, 2010, 1 (02): : 537 - 552
  • [42] Spectral-Domain Optical Coherence Tomography Angiography of Choroidal Neovascularization
    de Carlo, Talisa E.
    Bonini Filho, Marco A.
    Chin, Adam T.
    Adhi, Mehreen
    Ferrara, Daniela
    Baumal, Caroline R.
    Witkin, Andre J.
    Reichel, Elias
    Duker, Jay S.
    Waheed, Nadia K.
    OPHTHALMOLOGY, 2015, 122 (06) : 1228 - 1238
  • [43] Spectral-domain optical coherence tomography findings in Alstrom Syndrome
    Khetan, Vikas
    Dotan, Gad
    Marshall, Jan D.
    Affel, Elizabeth
    George, Denise-Armiger
    Levin, Alex V.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [44] Adaptive compressed sensing for spectral-domain optical coherence tomography
    Wang, Yi
    Chen, Xiaodong
    Wang, Ting
    Li, Hongxiao
    Yu, Daoyin
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XVIII, 2014, 8934
  • [45] Retinal and choroidal intravascular spectral-domain optical coherence tomography
    Willerslev, Anne
    Li, Xiao Q.
    Cordtz, Peter
    Munch, Inger C.
    Larsen, Michael
    ACTA OPHTHALMOLOGICA, 2014, 92 (02) : 126 - 132
  • [46] Macular edema in the era of spectral-domain optical coherence tomography
    Hunter, Allan
    Chin, Eric K.
    Telander, David G.
    CLINICAL OPHTHALMOLOGY, 2013, 7 : 2085 - 2089
  • [47] Spectral-domain Optical Coherence Tomography Patterns in Intraocular Lymphoma
    Keino, Hiroshi
    Okada, Annabelle A.
    Watanabe, Takayo
    Echizen, Nariaki
    Inoue, Makoto
    Takayama, Nobuyuki
    Nagane, Motoo
    OCULAR IMMUNOLOGY AND INFLAMMATION, 2016, 24 (03) : 268 - 273
  • [48] Spectral-Domain Optical Coherence Tomography in Epiretinal Membrane Surgery
    Falkner-Radler, C. I.
    Glittenberg, C.
    Hagen, S.
    Binder, S.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [49] Coherent noise compensation in Spectral-Domain optical coherence tomography
    Gelikonov, V. M.
    Gelikonov, G. V.
    Kasatkina, I. V.
    Terpelov, D. A.
    Shilyagin, P. A.
    OPTICS AND SPECTROSCOPY, 2009, 106 (06) : 895 - 900
  • [50] Spectral-Domain Optical Coherence Tomography of White Dot Fovea
    Witkin, Andre J.
    London, Nikolas J. S.
    Wender, Jonathan D.
    Fu, Arthur
    Garg, Sunir J.
    Regillo, Carl D.
    ARCHIVES OF OPHTHALMOLOGY, 2012, 130 (12) : 1603 - 1605