Research on Van der Waals and Electrostatic Interaction of Cellulose Iα Based on Molecular Dynamics Simulation

被引:0
|
作者
Zhang, Hong-Hui [1 ]
Jiang, Xue-Wei [1 ]
Chen, Yu [1 ]
机构
[1] Wuhan Text Univ, Sch Fash, Wuhan Text & Apparel Digital Engn Technol Res Ctr, 1 Fangzhi Rd, Wuhan 430073, Hubei, Peoples R China
关键词
Van Der Waals Interaction; Electrostatic Interaction; Cellulose I alpha; Molecular Dynamics; CRYSTALLINE CELLULOSE; HYDROGEN-BONDS; MICROFIBRILS; BETA;
D O I
暂无
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
As can be observed on our previous works on cellulose I beta, Van der Waals and (VDW) electrostatic interaction (ELE) are indispensable for the stability of different sheets. In light of this, cellulose I alpha was selected as a research object to better understand the properties of native cellulose. With comparatively agreeable results to previous researches, the mean interactions of VDWand ELE per chain were determined to be -131.68 and -56.38 Kcal/mol respectively. The interactions VDW and ELE in cellulose I alpha per chain always decreased with the rise in temperature. Whereas, for cellulose I beta, the Van der Waals energy gradually reduced from 298 K to 400 K, then remained unchanged. The electrostatic energy increased initially, then decreased as the temperature ascended. The computation results indicate that the stratified interactions (intrachain, interchain and intersheet) are observed to be less than cellulose I beta. Nevertheless, the intersheet interactions in cellulose I alpha are comparable with cellulose I beta, especially for Van der Waals interaction. With quantitative analysis, the stability mechanism in cellulose I alpha is revealed to be different to I beta. The interaction VDW has a better performance at high temperature for intersheet and interchain structure.
引用
收藏
页码:969 / 975
页数:7
相关论文
共 50 条
  • [41] Ultrafast dynamics in van der Waals heterostructures
    Jin, Chenhao
    Ma, Eric Yue
    Karni, Ouri
    Regan, Emma C.
    Wang, Feng
    Heinz, Tony F.
    NATURE NANOTECHNOLOGY, 2018, 13 (11) : 994 - 1003
  • [42] Toner adhesion: Effects of electrostatic and van der Waals interactions
    Rimai, DS
    Ezenyilimba, M
    Goebel, WK
    Cormier, S
    Quesnel, DJ
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2002, 46 (03) : 200 - 207
  • [43] The van der Waals interaction between colloidal particles and its molecular interpretation
    Wennerström, H
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2003, 228 (1-3) : 189 - 195
  • [44] Oriented dynamics in van der Waals complexes
    Heaven, MC
    Buchachenko, AA
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2003, 222 (01) : 31 - 45
  • [45] DISSOCIATION DYNAMICS OF VAN DER WAALS MOLECULES
    DEPRISTO, AE
    RAMASWAMY, R
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (04): : 494 - 494
  • [46] Ultrafast dynamics in van der Waals heterostructures
    Chenhao Jin
    Eric Yue Ma
    Ouri Karni
    Emma C. Regan
    Feng Wang
    Tony F. Heinz
    Nature Nanotechnology, 2018, 13 : 994 - 1003
  • [47] Instability of nanocantilever arrays in electrostatic and van der Waals interactions
    Ramezani, Asghar
    Alasty, Aria
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (22)
  • [48] The adhesion of spherical toner: Electrostatic and van der Waals interactions
    Rimai, DS
    Ezenyilimba, M
    Goebel, WK
    Cormier, SO
    Quesnel, DJ
    IS&T'S NIP17: INTERNATIONAL CONFERENCE ON DIGITAL PRINTING TECHNOLOGIES, 2001, : 610 - 613
  • [49] Interplay of electrostatic and van der Waals forces in coronene dimer
    Obolensky, O. I.
    Semenikhina, V. V.
    Solov'yov, A. V.
    Greiner, W.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2007, 107 (06) : 1335 - 1343
  • [50] Hidden scale invariance in molecular van der Waals liquids: A simulation study
    Schroder, Thomas B.
    Pedersen, Ulf R.
    Bailey, Nicholas P.
    Toxvaerd, Soren
    Dyre, Jeppe C.
    PHYSICAL REVIEW E, 2009, 80 (04):