Research on Van der Waals and Electrostatic Interaction of Cellulose Iα Based on Molecular Dynamics Simulation

被引:0
|
作者
Zhang, Hong-Hui [1 ]
Jiang, Xue-Wei [1 ]
Chen, Yu [1 ]
机构
[1] Wuhan Text Univ, Sch Fash, Wuhan Text & Apparel Digital Engn Technol Res Ctr, 1 Fangzhi Rd, Wuhan 430073, Hubei, Peoples R China
关键词
Van Der Waals Interaction; Electrostatic Interaction; Cellulose I alpha; Molecular Dynamics; CRYSTALLINE CELLULOSE; HYDROGEN-BONDS; MICROFIBRILS; BETA;
D O I
暂无
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
As can be observed on our previous works on cellulose I beta, Van der Waals and (VDW) electrostatic interaction (ELE) are indispensable for the stability of different sheets. In light of this, cellulose I alpha was selected as a research object to better understand the properties of native cellulose. With comparatively agreeable results to previous researches, the mean interactions of VDWand ELE per chain were determined to be -131.68 and -56.38 Kcal/mol respectively. The interactions VDW and ELE in cellulose I alpha per chain always decreased with the rise in temperature. Whereas, for cellulose I beta, the Van der Waals energy gradually reduced from 298 K to 400 K, then remained unchanged. The electrostatic energy increased initially, then decreased as the temperature ascended. The computation results indicate that the stratified interactions (intrachain, interchain and intersheet) are observed to be less than cellulose I beta. Nevertheless, the intersheet interactions in cellulose I alpha are comparable with cellulose I beta, especially for Van der Waals interaction. With quantitative analysis, the stability mechanism in cellulose I alpha is revealed to be different to I beta. The interaction VDW has a better performance at high temperature for intersheet and interchain structure.
引用
收藏
页码:969 / 975
页数:7
相关论文
共 50 条
  • [21] Influence of molecular structure on the dynamics of supercooled van der Waals liquids
    Casalini, R
    Paluch, M
    Roland, CM
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [22] Liquid crystal modeling:: Electrostatic and van der Waals interaction energies for molecular building blocks from benzene to cholesterol
    Braun, B
    Hohla, M
    Köhler, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (2-3): : 455 - 468
  • [23] Molecular Surfaces, van der Waals Radii and Electrostatic Potentials in Relation to Noncovalent Interactions
    Murray, Jane S.
    Politzer, Peter
    CROATICA CHEMICA ACTA, 2009, 82 (01) : 267 - 275
  • [24] Efficient molecular recognition based on nonspecific van der Waals interaction at the solid/liquid interface
    Cao, Lili
    Xu, Lirong
    Zhao, Dahui
    Tahara, Kazukuni
    Tobe, Yoshito
    De Feyter, Steven
    Lei, Shengbin
    CHEMICAL COMMUNICATIONS, 2014, 50 (80) : 11946 - 11949
  • [25] The Coulomb interaction in van der Waals heterostructures
    Huang, Le
    Zhong, MianZeng
    Deng, HuiXiong
    Li, Bo
    Wei, ZhongMing
    Li, JingBo
    Wei, SuHuai
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (03)
  • [26] VAN-DER-WAALS INTERACTION OF MEMBRANES
    FENZL, W
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1995, 97 (02): : 333 - 336
  • [27] van der Waals interaction and wetting transitions
    Fenzl, W
    EUROPHYSICS LETTERS, 2003, 64 (01): : 64 - 69
  • [28] Enhanced van der Waals interaction at interfaces
    Tomas, Marin-Slobodan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (16)
  • [29] Van-der-Waals-interaction constant
    Neundorf, D
    SPECTRAL LINE SHAPES, VOL 9 - 13TH ICSLS, 1997, (386): : 231 - 232
  • [30] van der Waals interaction of excited media
    Sherkunov, Y
    PHYSICAL REVIEW A, 2005, 72 (05):