Research on Van der Waals and Electrostatic Interaction of Cellulose Iα Based on Molecular Dynamics Simulation

被引:0
|
作者
Zhang, Hong-Hui [1 ]
Jiang, Xue-Wei [1 ]
Chen, Yu [1 ]
机构
[1] Wuhan Text Univ, Sch Fash, Wuhan Text & Apparel Digital Engn Technol Res Ctr, 1 Fangzhi Rd, Wuhan 430073, Hubei, Peoples R China
关键词
Van Der Waals Interaction; Electrostatic Interaction; Cellulose I alpha; Molecular Dynamics; CRYSTALLINE CELLULOSE; HYDROGEN-BONDS; MICROFIBRILS; BETA;
D O I
暂无
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
As can be observed on our previous works on cellulose I beta, Van der Waals and (VDW) electrostatic interaction (ELE) are indispensable for the stability of different sheets. In light of this, cellulose I alpha was selected as a research object to better understand the properties of native cellulose. With comparatively agreeable results to previous researches, the mean interactions of VDWand ELE per chain were determined to be -131.68 and -56.38 Kcal/mol respectively. The interactions VDW and ELE in cellulose I alpha per chain always decreased with the rise in temperature. Whereas, for cellulose I beta, the Van der Waals energy gradually reduced from 298 K to 400 K, then remained unchanged. The electrostatic energy increased initially, then decreased as the temperature ascended. The computation results indicate that the stratified interactions (intrachain, interchain and intersheet) are observed to be less than cellulose I beta. Nevertheless, the intersheet interactions in cellulose I alpha are comparable with cellulose I beta, especially for Van der Waals interaction. With quantitative analysis, the stability mechanism in cellulose I alpha is revealed to be different to I beta. The interaction VDW has a better performance at high temperature for intersheet and interchain structure.
引用
收藏
页码:969 / 975
页数:7
相关论文
共 50 条
  • [31] On the van der Waals interaction of carbon nanocones
    Ansari, R.
    Alisafaei, F.
    Alipour, A.
    Mahmoudinezhad, E.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2012, 73 (06) : 751 - 756
  • [32] The van der Waals interaction of hydrogen atoms
    Pauling, L
    Beach, JY
    PHYSICAL REVIEW, 1935, 47 (09): : 0686 - 0692
  • [33] A functional approach to the Van der Waals interaction
    Fosco, C. D.
    Hansen, G.
    ANNALS OF PHYSICS, 2023, 455
  • [34] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    Science China Physics, Mechanics & Astronomy, 2019, 62
  • [35] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    Science China(Physics,Mechanics & Astronomy), 2019, Mechanics & Astronomy)2019 (03) : 106 - 111
  • [36] Simulation on Dynamics of Voltage Distribution Regarding van der Waals Tunneling Gap
    Kim, Kwangsu
    Kwon, Hee Young
    Park, Tae-Eon
    Kim, Sanghoon
    Kim, Kyoung-Whan
    JOURNAL OF THE KOREAN MAGNETICS SOCIETY, 2022, 32 (03): : 123 - 129
  • [37] Protein Adsorption into Mesopores: A Combination of Electrostatic Interaction, Counterion Release, and van der Waals Forces
    Moerz, Sebastian T.
    Huber, Patrick
    LANGMUIR, 2014, 30 (10) : 2729 - 2737
  • [38] Deciphering van der Waals interaction between polypropylene and carbonated fly ash from experimental and molecular simulation
    Hwang, Sosan
    Jin, Sung Hoon
    Kim, Yongha
    Seo, Jin Sung
    So, Jae-Il
    Kim, Jincheol
    Lee, Yongjin
    Baeck, Sung-Hyeon
    Shim, Sang Eun
    Qian, Yingjie
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 421
  • [39] Interaction of Oligonucleotides with Gold Nanoparticles: Factors Beyond Electrostatic and Van-Der Waals Forces
    Thakur, Shaila
    Cavallini, Nicola
    Ferrari, Debora
    Fabris, Laura
    ADVANCED MATERIALS INTERFACES, 2024,
  • [40] Cavitation in a binary Lennard-Jones mixture: van der Waals gradient theory and molecular dynamics simulation
    Baidakov, V. G.
    Bryukhanov, V. M.
    PHYSICS OF FLUIDS, 2024, 36 (03)