Highly Scaled Vertical Cylindrical SONOS Cell With Bilayer Polysilicon Channel for 3-D NAND Flash Memory

被引:39
|
作者
Van den Bosch, G. [1 ]
Kar, G. S. [1 ]
Blomme, P. [1 ]
Arreghini, A. [1 ]
Cacciato, A. [1 ]
Breuil, L. [1 ]
De Keersgieter, A. [1 ]
Paraschiv, V. [1 ]
Vrancken, C. [1 ]
Douhard, B. [1 ]
Richard, O. [1 ]
Van Aerde, S. [2 ]
Debusschere, I. [1 ]
Van Houdt, J. [1 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] ASM, B-3001 Louvain, Belgium
关键词
NAND Flash; NVM; vertical cell; 3-D SONOS;
D O I
10.1109/LED.2011.2164775
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A vertical cylindrical SONOS cell with a novel bilayer polysilicon channel down to 22-nm diameter for 3-D NAND Flash memory is successfully developed. We introduce a thin amorphous silicon layer along with the oxide-nitride-oxide (ONO) gate stack inside the memory hole. This silicon layer protects the tunnel oxide during opening of the gate stack at the bottom of the memory hole, after which it serves as the first layer of the bilayer polysilicon channel. This approach enables the 3-D architecture to achieve minimum cell area (4F(2), with F being the feature size) without the need for the so-called pipeline connections. The smallest functional cells have the memory hole diameter F = 45 nm, resulting in 22-nm channel diameter. In case 16 cells are stacked, F = 45 nm would correspond to an equivalent 11-nm planar cell technology node. Excellent program/erase and retention obtained with the all-deposited ONO stack are demonstrated.
引用
收藏
页码:1501 / 1503
页数:3
相关论文
共 50 条
  • [31] Modeling of Trap Generation in 3-D NAND Charge Trap Flash Memory
    Kumar, Anuj
    Tiwari, Ravi
    Rai, Himanshu
    Saikia, Rashmi
    Bisht, Arnav Shaurva
    Mahapatra, Souvik
    2024 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, SISPAD 2024, 2024,
  • [32] Modeling of program Vth distribution for 3-D TLC NAND flash memory
    Kunliang WANG
    Gang DU
    Zhiyuan LUN
    Wangyong CHEN
    Xiaoyan LIU
    Science China(Information Sciences), 2019, 62 (04) : 187 - 196
  • [33] Modeling of program Vth distribution for 3-D TLC NAND flash memory
    Wang, Kunliang
    Du, Gang
    Lun, Zhiyuan
    Chen, Wangyong
    Liu, Xiaoyan
    SCIENCE CHINA-INFORMATION SCIENCES, 2019, 62 (04)
  • [34] Concave and Convex Structures for Advanced 3-D NAND Flash Memory Technology
    Song, Jiho
    Sim, Jae-Min
    Kim, Beomsu
    Song, Yun-Heub
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (04) : 2810 - 2814
  • [35] Program charge interference and mitigation in vertically scaled single and multiple-channel 3D NAND flash memory
    Verreck, D.
    Arreghini, A.
    Van den Bosch, G.
    Furnemont, A.
    Rosmeulen, M.
    2021 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD 2021), 2021, : 272 - 275
  • [36] Towards Improving Ionizing Radiation Tolerance of 3-D NAND Flash Memory
    Ray, Biswajit
    Buddhanoy, Matchima
    Kumar, Mondol Anik
    2023 IEEE INTERNATIONAL MEMORY WORKSHOP, IMW, 2023, : 109 - 112
  • [37] TCSE: A Target Cell States Elimination Coding Strategy for Highly Reliable Data Storage Based on 3-D NAND Flash Memory
    Wei, Debao
    Piao, Zhelong
    Feng, Hua
    Qiao, Liyan
    Hu, Cong
    Peng, Xiyuan
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (12) : 5299 - 5312
  • [38] Channel Modeling and Quantization Design for 3D NAND Flash Memory
    Wang, Cheng
    Mei, Zhen
    Li, Jun
    Shu, Feng
    He, Xuan
    Kong, Lingjun
    ENTROPY, 2023, 25 (07)
  • [39] Novel Dummy Cell Programming Scheme to Improve Retention Characteristics in 3-D NAND Flash Memory
    Kim, Donghwi
    Yoon, Gilsang
    Go, Donghyun
    Park, Jounghun
    Kim, Jungsik
    Lee, Jeong-Soo
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (08) : 4644 - 4648
  • [40] Highly Scalable Horizontal Channel 3-D NAND Memory Excellent in Compatibility With Conventional Fabrication Technology
    Sakuma, Kiwamu
    Kusai, Haruka
    Fujii, Shosuke
    Koyama, Masato
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (09) : 1142 - 1144