The optical soliton solutions of generalized coupled nonlinear Schrodinger-Korteweg-de Vries equations

被引:54
|
作者
Akinyemi, Lanre [1 ]
Senol, Mehmet [2 ]
Akpan, Udoh [3 ]
Oluwasegun, Kayode [4 ]
机构
[1] Lafayette Coll, Dept Math, Easton, PA 18042 USA
[2] Nevsehir Haci Bektas Veli Univ, Dept Math, Nevsehir, Turkey
[3] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
Nonlinear Schrodinger equation; Korteweg-de Vries equation; Sub-equation method; Kudryashov method; Soliton solutions; WAVE SOLUTIONS; EXISTENCE;
D O I
10.1007/s11082-021-03030-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The quest for exact solutions to nonlinear partial differential equations has become a remarkable research subject in recent years. In this study, we employ the Kudryashov method and sub-equation method to retrieve the bright and dark soliton solutions of the generalized nonlinear Schrodinger-Korteweg-de Vries equations. Other soliton-type solutions like the periodic, singular, and rational solutions are achieved as well. These coupled equations occur in phenomena of interactions between short and long dispersive waves which are significant in various fields of applied sciences and engineering. The solutions obtained in this study have been verified with the help of the Mathematica package software. Furthermore, we present graphical representations of the solutions of bright and dark solitons for a useful understanding of the behavior and physical structures of the coupled equations considered.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Generalized stochastic Korteweg-de Vries equations, their Painlevé integrability, N-soliton and other solutions
    Akpan, Udoh
    Akinyemi, Lanre
    Ntiamoah, Daniel
    Houwe, Alphonse
    Abbagari, Souleymanou
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (07)
  • [42] Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations
    Martel, Y
    AMERICAN JOURNAL OF MATHEMATICS, 2005, 127 (05) : 1103 - 1140
  • [43] Soliton solutions, conservation laws and modulation instability for the discrete coupled modified Korteweg-de Vries equations
    Guo, Rui
    Song, Jiang-Yan
    Zhang, Hong-Tao
    Qi, Feng-Hua
    MODERN PHYSICS LETTERS B, 2018, 32 (14):
  • [44] New Analytical Solutions for Coupled Stochastic Korteweg-de Vries Equations via Generalized Derivatives
    Hyder, Abd-Allah
    Barakat, Mohamed A.
    Soliman, Ahmed H.
    Almoneef, Areej A.
    Cesarano, Clemente
    SYMMETRY-BASEL, 2022, 14 (09):
  • [45] On solitary-wave solutions for the coupled Korteweg-de Vries and modified Korteweg-de Vries equations and their dynamics
    Hong, WP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (3-4): : 125 - 132
  • [46] The functional variable method for solving the fractional Korteweg–de Vries equations and the coupled Korteweg–de Vries equations
    M MATINFAR
    M ESLAMI
    M KORDY
    Pramana, 2015, 85 : 583 - 592
  • [47] Stability and instability of periodic travelling wave solutions for the critical Korteweg-de Vries and nonlinear Schrodinger equations
    Pava, Jaime Angulo
    Amorin Natali, Fabio M.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (06) : 603 - 621
  • [48] Derivation of Korteweg-de Vries flow equations from nonlinear Schrodinger equation
    Ozer, Mehmet Naci
    Tascan, Filiz
    CHAOS SOLITONS & FRACTALS, 2009, 40 (05) : 2265 - 2270
  • [49] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [50] Optical soliton solutions of the generalized higher-order nonlinear Schrodinger equations and their applications
    Arshad, M.
    Seadawy, Aly R.
    Lu, Dianchen
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (11)