The optical soliton solutions of generalized coupled nonlinear Schrodinger-Korteweg-de Vries equations

被引:54
|
作者
Akinyemi, Lanre [1 ]
Senol, Mehmet [2 ]
Akpan, Udoh [3 ]
Oluwasegun, Kayode [4 ]
机构
[1] Lafayette Coll, Dept Math, Easton, PA 18042 USA
[2] Nevsehir Haci Bektas Veli Univ, Dept Math, Nevsehir, Turkey
[3] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
Nonlinear Schrodinger equation; Korteweg-de Vries equation; Sub-equation method; Kudryashov method; Soliton solutions; WAVE SOLUTIONS; EXISTENCE;
D O I
10.1007/s11082-021-03030-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The quest for exact solutions to nonlinear partial differential equations has become a remarkable research subject in recent years. In this study, we employ the Kudryashov method and sub-equation method to retrieve the bright and dark soliton solutions of the generalized nonlinear Schrodinger-Korteweg-de Vries equations. Other soliton-type solutions like the periodic, singular, and rational solutions are achieved as well. These coupled equations occur in phenomena of interactions between short and long dispersive waves which are significant in various fields of applied sciences and engineering. The solutions obtained in this study have been verified with the help of the Mathematica package software. Furthermore, we present graphical representations of the solutions of bright and dark solitons for a useful understanding of the behavior and physical structures of the coupled equations considered.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Well-posedness for the Schrodinger-Korteweg-De Vries system
    Corcho, A. J.
    Linares, F.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (09) : 4089 - 4106
  • [22] Multi-hump bright and dark solitons for the Schrodinger-Korteweg-de Vries coupled system
    Parra Prado, Hugo
    Cisneros-Ake, Luis A.
    CHAOS, 2019, 29 (05)
  • [23] A higher order system of some coupled nonlinear Schrodinger and Korteweg-de Vries equations
    Alvarez-Caudevilla, P.
    Colorado, Eduardo
    Fabelo, Rasiel
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
  • [24] Rational soliton solutions in the nonlocal coupled complex modified Korteweg-de Vries equations
    Li, Miao
    Zhang, Yi
    Ye, Rusuo
    Lou, Yu
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (06) : 2155 - 2162
  • [25] New periodic wave and soliton solutions for system of coupled Korteweg-de Vries equations
    Rady, A. S. Abdel
    Khater, A. H.
    Osman, E. S.
    Khalfallah, Mohammed
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 406 - 414
  • [26] THE CAUCHY PROBLEM FOR A SCHRODINGER-KORTEWEG-DE VRIES SYSTEM WITH ROUGH DATA
    Pecher, Hartmut
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2005, 18 (10) : 1147 - 1174
  • [27] Nonlinear stability of breather solutions to the coupled modified Korteweg-de Vries equations
    Wang, Jingqun
    Tian, Lixin
    Guo, Boling
    Zhang, Yingnan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90
  • [28] Spatial decay of multi-solitons of the generalized Korteweg-de Vries and nonlinear Schrodinger equations
    Cote, Raphael
    Friederich, Xavier
    MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1163 - 1198
  • [29] GEVREY REGULARIZING EFFECT FOR THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION AND NONLINEAR SCHRODINGER-EQUATIONS
    DEBOUARD, A
    HAYASHI, N
    KATO, K
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (06): : 673 - 725
  • [30] Multiple and Singular Soliton Solutions for Space - Time Fractional Coupled Modified Korteweg - De Vries Equations
    Hassaballa, Abaker A.
    Birkea, Fathea M. O.
    Adam, Ahmed M. A.
    Satty, Ali
    Gumma, Elzain A. E.
    Abdel-Salam, Emad A. -B.
    Yousif, Eltayeb A.
    Nouh, Mohamed I.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22 : 1 - 15