The functional variable method for solving the fractional Korteweg–de Vries equations and the coupled Korteweg–de Vries equations

被引:0
|
作者
M MATINFAR
M ESLAMI
M KORDY
机构
[1] University of Mazandaran,Department of Mathematics, Faculty of Mathematical Sciences
来源
Pramana | 2015年 / 85卷
关键词
Korteweg–de Vries equation; coupled Korteweg–de Vries equation; functional variable method; 02.30.Jr; 05.45.Yv;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents the exact solutions for the fractional Korteweg–de Vries equations and the coupled Korteweg–de Vries equations with time-fractional derivatives using the functional variable method. The fractional derivatives are described in the modified Riemann–Liouville derivative sense. It is demonstrated that the calculations involved in the functional variable method are extremely simple and straightforward and this method is very effective for handling nonlinear fractional equations.
引用
收藏
页码:583 / 592
页数:9
相关论文
共 50 条
  • [1] The functional variable method for solving the fractional Korteweg-de Vries equations and the coupled Korteweg-de Vries equations
    Matinfar, M.
    Eslami, M.
    Kordy, M.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (04): : 583 - 592
  • [2] New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger’s equations
    Khaled M. Saad
    Dumitru Baleanu
    Abdon Atangana
    Computational and Applied Mathematics, 2018, 37 : 5203 - 5216
  • [3] The Time-Fractional Coupled-Korteweg-de-Vries Equations
    Atangana, Abdon
    Secer, Aydin
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [4] The coupled modified Korteweg-de Vries equations
    Tsuchida, T
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (04) : 1175 - 1187
  • [5] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations
    Khader, M. M.
    Saad, Khaled M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (01) : 67 - 77
  • [6] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers’ and Burgers’ Equations
    M. M. Khader
    Khaled M. Saad
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2021, 91 : 67 - 77
  • [7] On the modified fractional Korteweg-de Vries and related equations
    Klein, Christian
    Saut, Jean-Claude
    Wang, Yuexun
    NONLINEARITY, 2022, 35 (03) : 1170 - 1212
  • [8] New fractional derivatives applied to the Korteweg-de Vries and Korteweg-de Vries-Burger's equations
    Saad, Khaled M.
    Baleanu, Dumitru
    Atangana, Abdon
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 5203 - 5216
  • [9] On the integrability properties of variable coefficient Korteweg de Vries equations
    Gungor, F
    Sanielevici, M
    Winternitz, P
    CANADIAN JOURNAL OF PHYSICS, 1996, 74 (9-10) : 676 - 684
  • [10] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025