Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations

被引:59
|
作者
Du, Qiang [1 ]
Zhang, Jian [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2008年 / 30卷 / 03期
关键词
vesicle membrane; phase field; elastic bending energy; a posteriori error estimator; adaptive finite element; mixed finite element;
D O I
10.1137/060656449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a three-dimensional adaptive finite element method is developed for a variational phase field bending elasticity model of vesicle membrane deformations. Using a mixed finite element formulation, residual type a posteriori error estimates are derived for the associated nonlinear system of equations and, they are used to introduce the mesh refinement and coarsening. The resulting mesh adaptivity significantly improves the efficiency of the phase field simulation of vesicle membranes and enhances its capability in handling complex shape and topological changes. The effectiveness of the adaptive method is further demonstrated through numerical examples.
引用
收藏
页码:1634 / 1657
页数:24
相关论文
共 50 条
  • [41] Application of Adaptive Phase-Field Scaled Boundary Finite Element Method for Functionally Graded Materials
    Pramod, Aladurthi L. N.
    Hirshikesh
    Natarajan, Sundararajan
    Ooi, Ean Tat
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (03)
  • [42] Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method
    Hirshikesh
    Pramod, A. L. N.
    Annabattula, R. K.
    Ooi, E. T.
    Song, C.
    Natarajan, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 355 : 284 - 307
  • [43] A FINITE-ELEMENT METHOD FOR STABILITY PROBLEMS IN FINITE ELASTICITY
    REESE, S
    WRIGGERS, P
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (07) : 1171 - 1200
  • [45] An Improved Adaptive Finite Element Method for the Simulation of Electromagnetic Field in PPFDs
    Tang, Zhanghong
    Wang, Qun
    Guo, Hongxia
    Shi, Meiwu
    Li, Maohui
    CEEM: 2009 5TH ASIA-PACIFIC CONFERENCE ON ENVIRONMENTAL ELECTROMAGNETICS, 2009, : 324 - +
  • [46] On the stress calculation within phase-field approaches: a model for finite deformations
    Schneider, Daniel
    Schwab, Felix
    Schoof, Ephraim
    Reiter, Andreas
    Herrmann, Christoph
    Selzer, Michael
    Boehlke, Thomas
    Nestler, Britta
    COMPUTATIONAL MECHANICS, 2017, 60 (02) : 203 - 217
  • [47] The Meshfree Finite Element Method for Fluids with Large Deformations
    Darbani, Mohsen
    DIFFUSION IN SOLIDS AND LIQUIDS VII, 2012, 326-328 : 176 - 180
  • [48] On the stress calculation within phase-field approaches: a model for finite deformations
    Daniel Schneider
    Felix Schwab
    Ephraim Schoof
    Andreas Reiter
    Christoph Herrmann
    Michael Selzer
    Thomas Böhlke
    Britta Nestler
    Computational Mechanics, 2017, 60 : 203 - 217
  • [49] Finite element approximation of a phase field model for void electromigration
    Barrett, JW
    Nürnberg, R
    Styles, V
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) : 738 - 772
  • [50] A modified finite volume element method for solving the phase field Allen-Cahn model
    Li, Huanrong
    Wang, Dongmei
    APPLIED MATHEMATICS LETTERS, 2022, 127