Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations

被引:59
|
作者
Du, Qiang [1 ]
Zhang, Jian [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2008年 / 30卷 / 03期
关键词
vesicle membrane; phase field; elastic bending energy; a posteriori error estimator; adaptive finite element; mixed finite element;
D O I
10.1137/060656449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a three-dimensional adaptive finite element method is developed for a variational phase field bending elasticity model of vesicle membrane deformations. Using a mixed finite element formulation, residual type a posteriori error estimates are derived for the associated nonlinear system of equations and, they are used to introduce the mesh refinement and coarsening. The resulting mesh adaptivity significantly improves the efficiency of the phase field simulation of vesicle membranes and enhances its capability in handling complex shape and topological changes. The effectiveness of the adaptive method is further demonstrated through numerical examples.
引用
收藏
页码:1634 / 1657
页数:24
相关论文
共 50 条
  • [21] A space-time adaptive finite element method with exponential time integrator for the phase field model of pitting corrosion
    Gao, Huadong
    Ju, Lili
    Li, Xiao
    Duddu, Ravindra
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 406
  • [22] CONVERGENCE OF AN ADAPTIVE MIXED FINITE ELEMENT METHOD FOR KIRCHHOFF PLATE BENDING PROBLEMS
    Huang, Jianguo
    Huang, Xuehai
    Xu, Yifeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) : 574 - 607
  • [23] An adaptive mixed finite element method for wind field adjustment
    Cascon, J. M.
    Ferragut, L.
    ADVANCES IN ENGINEERING SOFTWARE, 2007, 38 (06) : 350 - 357
  • [24] An Improved Adaptive Finite Element Method for the Simulation of Electromagnetic Field
    Tang, Zhanghong
    Yuan, Jiansheng
    Tao, Gai
    PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 1671 - +
  • [25] Computation of Liver Deformations with Finite Element Model
    Chien, Chih-Chien
    Chang, Yi-Fan
    Ho, Ming-Chih
    Yen, Jia-Yush
    Chen, Yung-Yaw
    2017 INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2017,
  • [26] Matlab Implementation of the Finite Element Method in Elasticity
    J. Alberty
    C. Carstensen
    S. A. Funken
    R. Klose
    Computing, 2002, 69 : 239 - 263
  • [27] THE FINITE-ELEMENT METHOD FOR NONLINEAR ELASTICITY
    LI, ZP
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1989, 7 (01): : 1 - 14
  • [28] CONVERGENCE OF FINITE ELEMENT METHOD IN THEORY OF ELASTICITY
    JOHNSON, MW
    MCLAY, RW
    JOURNAL OF APPLIED MECHANICS, 1968, 35 (02): : 274 - &
  • [29] Matlab implementation of the finite element method in elasticity
    Alberty, J
    Carstensen, C
    Funken, SA
    Klose, R
    COMPUTING, 2002, 69 (03) : 239 - 263
  • [30] CONVERGENCE OF FINITE ELEMENT METHOD IN THEORY OF ELASTICITY
    JOHNSON, MW
    MCLAY, RW
    MECHANICAL ENGINEERING, 1968, 90 (08) : 56 - &