Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations

被引:59
|
作者
Du, Qiang [1 ]
Zhang, Jian [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2008年 / 30卷 / 03期
关键词
vesicle membrane; phase field; elastic bending energy; a posteriori error estimator; adaptive finite element; mixed finite element;
D O I
10.1137/060656449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a three-dimensional adaptive finite element method is developed for a variational phase field bending elasticity model of vesicle membrane deformations. Using a mixed finite element formulation, residual type a posteriori error estimates are derived for the associated nonlinear system of equations and, they are used to introduce the mesh refinement and coarsening. The resulting mesh adaptivity significantly improves the efficiency of the phase field simulation of vesicle membranes and enhances its capability in handling complex shape and topological changes. The effectiveness of the adaptive method is further demonstrated through numerical examples.
引用
收藏
页码:1634 / 1657
页数:24
相关论文
共 50 条
  • [31] Finite element method in plane Cosserat elasticity
    Providas, E
    Kattis, MA
    COMPUTERS & STRUCTURES, 2002, 80 (27-30) : 2059 - 2069
  • [32] A Mixed Finite Element Method for Elasticity Problem
    Elakkad, A.
    Bennani, M. A.
    Mekkaoui, J. E. L.
    Elkhalfi, A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2013, 4 (02) : 161 - 166
  • [33] A MEMBRANE ELEMENT MODEL WITH BENDING MODIFICATION FOR ONE STEP INVERSE METHOD
    Jingxin Na 1 Jian Jiao 2 Yakun Yan 3 Haipeng Liu 1 (1 State Key Laboratory of Automobile Dynamics Simulation
    Acta Mechanica Solida Sinica, 2011, 24 (03) : 282 - 288
  • [34] A MEMBRANE ELEMENT MODEL WITH BENDING MODIFICATION FOR ONE STEP INVERSE METHOD
    Na, Jingxin
    Jiao, Jian
    Yan, Yakun
    Liu, Haipeng
    ACTA MECHANICA SOLIDA SINICA, 2011, 24 (03) : 282 - 288
  • [35] A membrane element model with bending modification for one step inverse method
    Na J.
    Jiao J.
    Yan Y.
    Liu H.
    Acta Mechanica Solida Sinica, 2011, 24 (3) : 282 - 288
  • [36] ADAPTIVE BOUNDARY ELEMENT METHOD FOR BIDIMENSIONAL ELASTICITY
    LEAL, RP
    SOARES, CAM
    COMPUTERS & STRUCTURES, 1988, 30 (04) : 841 - 844
  • [37] A hybrid method of coupling phase field model and linear elastic model to simulate fracture using cell-based smooth finite element method and finite element method
    Yu, Yuanfeng
    Hou, Chi
    Rabczuk, Timon
    Zhao, Meiying
    ENGINEERING FRACTURE MECHANICS, 2025, 314
  • [38] The least-squares finite element method in elasticity. Part II: Bending of thin plates
    Jiang, B
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 54 (10) : 1459 - 1475
  • [39] AN ENERGY STABLE C0 FINITE ELEMENT SCHEME FOR A PHASE-FIELD MODEL OF VESICLE MOTION AND DEFORMATION
    Shen, Lingyue
    Xu, Zhiliang
    Lin, Ping
    Huang, Huaxiong
    Xu, Shixin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (01): : B122 - B145
  • [40] Adaptive finite element method for hybrid phase-field modeling of three-dimensional cracks
    Qiu, Shasha
    Duan, Qinglin
    Shao, Yulong
    Chen, Songtao
    Yao, Weian
    ENGINEERING FRACTURE MECHANICS, 2022, 271