Bucket elimination: A unifying framework for probabilistic inference

被引:0
|
作者
Dechter, R [1 ]
机构
[1] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92717 USA
来源
LEARNING IN GRAPHICAL MODELS | 1998年 / 89卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probabilistic inference algorithms for belief updating, finding the most probable explanation, the maximum a posteriori hypothesis, and the maximum expected utility are reformulated within the bucket elimination framework. This emphasizes the principles common to many of the algorithms appearing in the probabilistic inference literature and clarifies the relationship of such algorithms to nonserial dynamic programming algorithms. A general method for combining conditioning and bucket elimination is also presented. For all the algorithms, bounds on complexity are given as a function of the problem's structure.
引用
收藏
页码:75 / 104
页数:30
相关论文
共 50 条
  • [41] A probabilistic rating inference framework for mining user preferences from reviews
    Cane Wing-ki Leung
    Stephen Chi-fai Chan
    Fu-lai Chung
    Grace Ngai
    World Wide Web, 2011, 14 : 187 - 215
  • [42] A Unifying Variational Inference Framework for Hierarchical Graph-Coupled HMM with an Application to Influenza Infection
    Fan, Kai
    Li, Chunyuan
    Heller, Katherine
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 3828 - 3834
  • [43] A unifying framework for rank and pseudo-rank based inference using nonparametric confidence distributions
    Beck, Jonas
    Bathke, Arne C.
    STATISTICAL PAPERS, 2024, 65 (03) : 1233 - 1257
  • [44] A UNIFYING EVALUATION FRAMEWORK
    COMTOIS, JD
    BUREAUCRAT, 1981, 10 (02): : 18 - 24
  • [45] CUBE: A CUDA Approach for Bucket Elimination on GPUs
    Bistaffa, Filippo
    Bombieri, Nicola
    Farinelli, Alessandro
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 125 - 132
  • [46] A Unifying Splitting Framework
    Ebner, Gabriel
    Blanchette, Jasmin
    Tourret, Sophie
    AUTOMATED DEDUCTION, CADE 28, 2021, 12699 : 344 - 360
  • [47] Unifying Training and Inference for Panoptic Segmentation
    Li, Qizhu
    Qi, Xiaojuan
    Torr, Philip H. S.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 13317 - 13325
  • [48] A Unifying Probabilistic View of Associative Learning
    Gershman, Samuel J.
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (11)
  • [49] An Efficient Approach for Accelerating Bucket Elimination on GPUs
    Bistaffa, Filippo
    Bombieri, Nicola
    Farinelli, Alessandro
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (11) : 3967 - 3979
  • [50] Adaptive Meta-Learning Probabilistic Inference Framework for Long Sequence Prediction
    Zhu, Jianping
    Guo, Xin
    Chen, Yang
    Yang, Yao
    Li, Wenbo
    Jin, Bo
    Wu, Fei
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 17159 - 17166