Bucket elimination: A unifying framework for probabilistic inference

被引:0
|
作者
Dechter, R [1 ]
机构
[1] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92717 USA
来源
LEARNING IN GRAPHICAL MODELS | 1998年 / 89卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probabilistic inference algorithms for belief updating, finding the most probable explanation, the maximum a posteriori hypothesis, and the maximum expected utility are reformulated within the bucket elimination framework. This emphasizes the principles common to many of the algorithms appearing in the probabilistic inference literature and clarifies the relationship of such algorithms to nonserial dynamic programming algorithms. A general method for combining conditioning and bucket elimination is also presented. For all the algorithms, bounds on complexity are given as a function of the problem's structure.
引用
收藏
页码:75 / 104
页数:30
相关论文
共 50 条
  • [31] Unifying probabilistic and variational estimation
    Hamza, AB
    Krim, H
    Unal, GB
    IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (05) : 37 - 47
  • [32] Bucket elimination for multiobjective optimization problems
    Emma Rollón
    Javier Larrosa
    Journal of Heuristics, 2006, 12 : 307 - 328
  • [33] PROBABILISTIC ANALYSIS OF BUCKET RECURSIVE TREES
    MAHMOUD, HM
    SMYTHE, RT
    THEORETICAL COMPUTER SCIENCE, 1995, 144 (1-2) : 221 - 249
  • [34] The pywmi Framework and Toolbox for Probabilistic Inference using Weighted Model Integration
    Kolb, Samuel
    Morettin, Paolo
    Dos Martires, Pedro Zuidberg
    Sommavilla, Francesco
    Passerini, Andrea
    Sebastiani, Roberto
    De Raedt, Luc
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6530 - 6532
  • [35] A Probabilistic Framework for Molecular Network Structure Inference by Means of Mechanistic Modeling
    Timonen, Juho
    Mannerstrom, Henrik
    Lahdesmaki, Harri
    Intosalmi, Jukka
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (06) : 1843 - 1854
  • [36] A probabilistic rating inference framework for mining user preferences from reviews
    Leung, Cane Wing-ki
    Chan, Stephen Chi-fai
    Chung, Fu-lai
    Ngai, Grace
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2011, 14 (02): : 187 - 215
  • [37] TOPOLOGICAL FRAMEWORK FOR REPRESENTING AND SOLVING PROBABILISTIC INFERENCE PROBLEMS IN EXPERT SYSTEMS
    REGE, A
    AGOGINO, AM
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1988, 18 (03): : 402 - 414
  • [38] A generic framework for a compilation-based inference in probabilistic and possibilistic networks
    Ayachi, Raouia
    Ben Amor, Nahla
    Benferhat, Salem
    INFORMATION SCIENCES, 2014, 257 : 342 - 356
  • [39] An Evidence-Driven Probabilistic Inference Framework for Semantic Image Understanding
    Nikolopoulos, Spiros
    Papadopoulos, Georgios Th.
    Kompatsiaris, Ioannis
    Patras, Ioannis
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, 2009, 5632 : 525 - +
  • [40] Inferential Models: A Framework for Prior-Free Posterior Probabilistic Inference
    Martin, Ryan
    Liu, Chuanhai
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (501) : 301 - 313