Bucket elimination: A unifying framework for probabilistic inference

被引:0
|
作者
Dechter, R [1 ]
机构
[1] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92717 USA
来源
LEARNING IN GRAPHICAL MODELS | 1998年 / 89卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probabilistic inference algorithms for belief updating, finding the most probable explanation, the maximum a posteriori hypothesis, and the maximum expected utility are reformulated within the bucket elimination framework. This emphasizes the principles common to many of the algorithms appearing in the probabilistic inference literature and clarifies the relationship of such algorithms to nonserial dynamic programming algorithms. A general method for combining conditioning and bucket elimination is also presented. For all the algorithms, bounds on complexity are given as a function of the problem's structure.
引用
收藏
页码:75 / 104
页数:30
相关论文
共 50 条
  • [21] Improvements to Variable Elimination and Symbolic Probabilistic Inference for evaluating Influence Diagrams
    Cabañas, Rafael
    Cano, Andrés
    Gómez-Olmedo, Manuel
    Madsen, Anders L.
    International Journal of Approximate Reasoning, 2016, 70 : 13 - 35
  • [22] Improvements to Variable Elimination and Symbolic Probabilistic Inference for evaluating Influence Diagrams
    Cabanas, Rafael
    Cano, Andres
    Gomez-Olmedo, Manuel
    Madsen, Anders L.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2016, 70 : 13 - 35
  • [23] Bucket Renormalization for Approximate Inference
    Ahn, Sungsoo
    Chertkov, Michael
    Weller, Adrian
    Shin, Jinwoo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [24] Bucket renormalization for approximate inference
    Ahn, Sungsoo
    Chertkov, Michael
    Weller, Adrian
    Shin, Jinwoo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019, 2019 (12):
  • [25] MARKOV CHAIN SCORE ASCENT: A Unifying Framework of Variational Inference with Markovian Gradients
    Kim, Kyurae
    Oh, Jisu
    Gardner, Jacob R.
    Dieng, Adji Bousso
    Kim, Hongseok
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [26] Unifying inference for semiparametric regression
    Hong, Shaoxin
    Jiang, Jiancheng
    Jiang, Xuejun
    Xiao, Zhijie
    ECONOMETRICS JOURNAL, 2021, 24 (03): : 482 - 501
  • [27] A Distributed Variational Inference Framework for Unifying Parallel Sparse Gaussian Process Regression Models
    Trong Nghia Hoang
    Quang Minh Hoang
    Low, Bryan Kian Hsiang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [28] Unifying logical and probabilistic reasoning
    Haenni, R
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2005, 3571 : 788 - 799
  • [29] Bucket elimination for multiobjective optimization problems
    Rollon, E
    Larrosa, J
    JOURNAL OF HEURISTICS, 2006, 12 (4-5) : 307 - 328
  • [30] Active inference as a unifying, generic and adaptive framework for a P300-based BCI
    Mladenovic, Jelena
    Frey, Jeremy
    Joffily, Mateus
    Maby, Emmanuel
    Lotte, Fabien
    Mattout, Jeremie
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (01)