Bucket elimination: A unifying framework for probabilistic inference

被引:0
|
作者
Dechter, R [1 ]
机构
[1] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92717 USA
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probabilistic inference algorithms for belief updating, finding the most probable explanation, the maximum a posteriori hypothesis, and the maximum expected utility are reformulated within the bucket elimination framework. This emphasizes the principles common to many of the algorithms appearing in the probabilistic inference literature and clarifies the relationship of such algorithms to nonserial dynamic programming algorithms. A general method for combining conditioning and bucket elimination is also presented. For all the algorithms, bounds on complexity are given as a function of the problem's structure.
引用
收藏
页码:75 / 104
页数:30
相关论文
共 50 条
  • [1] Bucket elimination: A unifying framework for probabilistic inference
    Dechter, R
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 1996, : 211 - 219
  • [2] Bucket elimination: A unifying framework for reasoning
    Dechter, R
    ARTIFICIAL INTELLIGENCE, 1999, 113 (1-2) : 41 - 85
  • [3] Bucket Elimination: A Unifying Framework for Processing Hard and Soft Constraints
    Dechter R.
    Constraints, 1997, 2 (1) : 51 - 55
  • [4] Gauged Mini-Bucket Elimination for Approximate Inference
    Ahn, Sungsoo
    Chertkov, Michael
    Shin, Jinwoo
    Weller, Adrian
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [5] A Unifying Framework for Probabilistic Belief Revision
    Zhuang, Zhiqiang
    Delgrande, James
    Nayak, Abhaya
    Sattar, Abdul
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1370 - 1376
  • [6] A unifying framework for probabilistic validation metrics
    Gardner P.
    Lord C.
    Barthorpe R.J.
    Journal of Verification, Validation and Uncertainty Quantification, 2019, 4 (03):
  • [7] A unifying probabilistic framework for analyzing residual dipolar couplings
    Michael Habeck
    Michael Nilges
    Wolfgang Rieping
    Journal of Biomolecular NMR, 2008, 40 : 135 - 144
  • [8] Deep Probabilistic Logic: A Unifying Framework for Indirect Supervision
    Wang, Hai
    Poon, Hoifung
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 1891 - 1902
  • [9] A Unifying Probabilistic Framework for Partially Labeled Data Learning
    Gong, Xiuwen
    Yuan, Dong
    Bao, Wei
    Luo, Fulin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (07) : 8036 - 8048
  • [10] A unifying probabilistic framework for analyzing residual dipolar couplings
    Habeck, Michael
    Nilges, Michael
    Rieping, Wolfgang
    JOURNAL OF BIOMOLECULAR NMR, 2008, 40 (02) : 135 - 144