Calculating contracted tensor Feynman integrals

被引:9
|
作者
Fleischer, J. [2 ]
Riemann, T. [1 ]
机构
[1] DESY, D-15738 Zeuthen, Germany
[2] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany
关键词
NLO computations; QCD; QED; Feynman integrals; REDUCTION;
D O I
10.1016/j.physletb.2011.06.033
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A recently derived approach to the tensor reduction of 5-point one-loop Feynman integrals expresses the tensor coefficients by scalar 1-point to 4-point Feynman integrals completely algebraically. In this Letter we derive extremely compact algebraic expressions for the contractions of the tensor integrals with external momenta. This is based on sums over signed minors weighted with scalar products of the external momenta. With these contractions one can construct the invariant amplitudes of the matrix elements under consideration, and the evaluation of one-loop contributions to massless and massive multi-particle production at high energy colliders like LHC and ILC is expected to be performed very efficiently. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:646 / 653
页数:8
相关论文
共 50 条
  • [31] Gauss relations in Feynman integrals
    Feng, Tai-Fu
    Zhou, Yang
    Zhang, Hai-Bin
    PHYSICAL REVIEW D, 2025, 111 (01)
  • [32] Feynman integrals and intersection theory
    Mastrolia, Pierpaolo
    Mizera, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
  • [33] Functional Equations for Feynman Integrals
    Tarasov, O. V.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2011, 8 (05) : 419 - 427
  • [34] Feynman-Jackson integrals
    Diaz, Rafael
    Pariguan, Eddy
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 (03) : 365 - 376
  • [35] Feynman integrals with point interactions
    Franchini, E
    Maioli, M
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 46 (5-6) : 685 - 694
  • [36] Cluster Algebras for Feynman Integrals
    Chicherin, Dmitry
    Henn, Johannes M.
    Papathanasiou, Georgios
    PHYSICAL REVIEW LETTERS, 2021, 126 (09)
  • [37] Hypergeometric structures in Feynman integrals
    Bluemlein, J.
    Saragnese, M.
    Schneider, C.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2023, 91 (05) : 591 - 649
  • [38] GENERALIZATION OF FEYNMAN PATH INTEGRALS
    THURBER, JK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A677 - A678
  • [39] Hypergeometric structures in Feynman integrals
    J. Blümlein
    M. Saragnese
    C. Schneider
    Annals of Mathematics and Artificial Intelligence, 2023, 91 : 591 - 649
  • [40] FEYNMAN-CAMERON INTEGRALS
    BEEKMAN, JA
    JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (03): : 253 - &