Calculating contracted tensor Feynman integrals

被引:9
|
作者
Fleischer, J. [2 ]
Riemann, T. [1 ]
机构
[1] DESY, D-15738 Zeuthen, Germany
[2] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany
关键词
NLO computations; QCD; QED; Feynman integrals; REDUCTION;
D O I
10.1016/j.physletb.2011.06.033
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A recently derived approach to the tensor reduction of 5-point one-loop Feynman integrals expresses the tensor coefficients by scalar 1-point to 4-point Feynman integrals completely algebraically. In this Letter we derive extremely compact algebraic expressions for the contractions of the tensor integrals with external momenta. This is based on sums over signed minors weighted with scalar products of the external momenta. With these contractions one can construct the invariant amplitudes of the matrix elements under consideration, and the evaluation of one-loop contributions to massless and massive multi-particle production at high energy colliders like LHC and ILC is expected to be performed very efficiently. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:646 / 653
页数:8
相关论文
共 50 条
  • [21] Feynman path integrals and Lebesgue–Feynman measures
    J. Montaldi
    O. G. Smolyanov
    Doklady Mathematics, 2017, 96 : 368 - 372
  • [22] ON RENORMALIZATION OF FEYNMAN INTEGRALS
    WESTWATE.MJ
    FORTSCHRITTE DER PHYSIK, 1969, 17 (01): : 1 - &
  • [23] Finite Feynman integrals
    Gambuti, Giulio
    Kosower, David A.
    Novichkov, Pavel P.
    Tancredi, Lorenzo
    PHYSICAL REVIEW D, 2024, 110 (11)
  • [24] Determining arbitrary Feynman integrals by vacuum integrals
    Liu, Xiao
    Ma, Yan-Qing
    PHYSICAL REVIEW D, 2019, 99 (07)
  • [25] Feynman integrals and iterated integrals of modular forms
    Adams, Luise
    Weinzierl, Stefan
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (02) : 193 - 251
  • [26] OPERATOR-VALUED FEYNMAN-INTEGRALS VIA CONDITIONAL FEYNMAN-INTEGRALS
    CHUNG, DM
    PARK, C
    SKOUG, D
    PACIFIC JOURNAL OF MATHEMATICS, 1990, 146 (01) : 21 - 42
  • [27] Feynman path integrals and Lebesgue-Feynman measures
    Montaldi, J.
    Smolyanov, O. G.
    DOKLADY MATHEMATICS, 2017, 96 (01) : 368 - 372
  • [28] NDIM achievements:: massive, arbitrary tensor rank and N-loop insertions in Feynman integrals
    Suzuki, AT
    Schmidt, AGM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (19): : 3713 - 3722
  • [29] STRUCTURE OF SINGULARITIES OF FEYNMAN INTEGRALS
    GREENMAN, JV
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1969, 60 (01): : 69 - +
  • [30] DIFFERENTIAL PROPERTIES OF FEYNMAN INTEGRALS
    BARUCCHI, G
    PONZANO, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1974, A 23 (04): : 733 - 742